Skip to main content
Log in

Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An industrial kraft pine lignin (Indulin AT, KL) was characterized and treated in both aqueous-buffered media and dioxane to water, either with a partially purified laccase from Fusarium proliferatum or with the laccase plus 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) as mediator. The changes in the lignin after different incubation periods were analyzed through the application of high performance liquid chromatography (HPLC), UV–visible (Vis) spectroscopy and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). At the onset of incubation, laccase-treated samples showed a slight polymerization and strong modifications in UV–Vis spectra. Through Py-GC/MS, a decrease in phenolic and methoxy-bearing pyrolysis products was observed, in contrast to an increase in the more oxidized products. After longer incubation periods (48 h) a substantial polymerization was detected by HPLC, along with a decrease in the guaiacyl (G) units. In contrast, the analysis by HPLC of the samples recovered from the laccase-ABTS system (LMS) showed an intense depolymerization, accompanied by a sizeable loss in G units and a decrease in the methyl and ethyl side-chain phenolic compounds. These results provide conclusive evidence of a rapid initial attack of the industrial lignin by laccase and notable modifications in the KL after longer incubation periods with laccase or LMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ander P, Eriksson KE (1978) Lignin degradation and utilization by microorganisms. In: Bull MJ (ed) Progress in industrial microbiology, vol. 14. Elsevier, Amsterdam, pp 1–58

    Google Scholar 

  • Anderson AJ, Kwon SI, Carnicero A, Falcón MA (2005) Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiol Lett 249:149–155

    Article  CAS  Google Scholar 

  • Balakshin MY, Chen CL, Gratzl JS, Kirman AG, Jacob H (2000) Kinetics studies on oxidation of veratryl alcohol by laccase-mediator system. Part 1: effects of mediator concentration. Holzforschung 54:165–170

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6 sulphonate). Appl Microbiol Biotechnol 36:823–827

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Camarero S, Bocchini P, Galletti GC, Martínez AT (1999) Pyrolysis-gas chromatography/mass spectrometry analysis of phenolic and etherified units in natural and industrial lignins. Rapid Commun Mass Spectrom 13:630–636

    Article  CAS  Google Scholar 

  • Cho NS, Shin W, Jeong SW, Leonowicz A (2004) Degradation of lignosulfonate by fungal laccase with low molecular mediators. Bull Korean Chem Soc 25:1551–1554

    Article  CAS  Google Scholar 

  • Crawford DL, Pometto AL III (1988) Acid-precipitable polymeric-lignin: production and analysis. In: Wood WA, Kellogg ST (eds) Methods in enzymology, vol. 161, part B. Academic, San Diego, pp 35–47

    Google Scholar 

  • d’Acunzo F, Galli C, Gentili P, Sergi F (2006) Mechanistic and steric issues in the oxidation of phenolic and non-phenolic compounds by laccase or laccase-mediator systems. New J Chem 30:583–591

    Article  Google Scholar 

  • Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M (2005) Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol 37:340–346

    Article  CAS  Google Scholar 

  • Erickson M, Miksche GE (1974) Characterization of gymnosperm lignins by oxidative degradation. Holzforschung 28:135–138

    Article  CAS  Google Scholar 

  • Freudenberg K, Chen CL, Cardinale G (1962) Die oxydation des methylierten natürlichen lignins. Chem Ber 95:2814–2828

    Article  CAS  Google Scholar 

  • Gargulak JD, Lebo SE (2000) Commercial use of lignin-based materials. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and material perspectives. American Chemical Society, Washington DC, pp 304–320

    Google Scholar 

  • Gierer J (1970) The reactions of lignin during pulping—a description and comparison of conventional pulping processes. Sven Papperstidn 73:571–596

    CAS  Google Scholar 

  • Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 241–266

    Google Scholar 

  • Hernández Fernaud JR, Carnicero A, Perestelo F, Hernández M, Arias E, Falcón MA (2006a) Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol 38:40–48

    Article  Google Scholar 

  • Hernández Fernaud JR, Marina A, González K, Vázquez J, Falcón MA (2006b) Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Appl Microbiol Biotechnol 70:212–221

    Article  Google Scholar 

  • Janshekar H, Brown C, Fiechter A (1981) Determination of biodegraded lignin by ultraviolet spectrophotometry. Anal Chim Acta 130:81–91

    Article  CAS  Google Scholar 

  • Jordaan J, Pletschke BI, Leukes WD (2004) Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete. Enzyme Microb Technol 34:635–641

    Article  CAS  Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110

    Article  CAS  Google Scholar 

  • Kawai S, Iwatsuki M, Nakagawa M, Inagaki M, Hamabe A, Ohashi H (2004) An alternative β-ether cleavage pathway for a non-phenolic β-O-4 lignin model dimer catalyzed by a laccase-mediator system. Enzyme Microb Technol 35:154–160

    Article  CAS  Google Scholar 

  • Kirk TK, Shimada M (1985) Lignin biodegradation: the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, pp 579–605

    Chapter  Google Scholar 

  • Leonowicz A, Sklarz G, Wojtas-Wasilewska M (1985) The effect of fungal laccase on fractionated lignosulphonates. Phytochemistry 24:393–396

    Article  CAS  Google Scholar 

  • Mackenzie CR, Bilous D, Scheneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839

    Article  CAS  Google Scholar 

  • Marton J (1971) Reactions in alkaline pulping. In: Sarkanen KV, Ludwig CH (eds) Lignin: occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 639–694

    Google Scholar 

  • Matsumura E, Yamamoto E, Numata A, Kawano T, Shin T, Murao S (1986) Structures of the laccase-catalyzed oxidation products of hydroxybenzoic acids in the presence of ABTS. Agric Biol Chem 50:1355–1357

    CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  • Milstein O, Hüttermann A, Lüdemann HD, Majcherczyk A, Nicklas B (1990) Enzymatic modification of lignin in organic solvents. In: Kirk TK, Chang HM (eds) Biotechnology in pulp and paper manufacture. Butterworth-Heinemann, Boston, pp 375–387

    Chapter  Google Scholar 

  • Morohoshi N, Wariishi H, Murasiso C, Nagai T, Haraguchi T (1987) Degradation of lignin by the extracellular enzymes of Coriolus versicolor. IV. Properties of three laccases fractionated from the extracellular enzymes. Mokuzai Gakkaishi 33:218–225

    CAS  Google Scholar 

  • Muheim A, Fiechter A, Harvey PJ, Schoemaker HE (1992) On the mechanism of oxidation of non-phenolic lignin model compounds by the laccase-ABTS couple. Holzforschung 46:121–126

    Article  CAS  Google Scholar 

  • Pickard MA, Vandertol H, Roman R, Vázquez-Duhalt R (1999) High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Can J Microbiol 45:627–631

    Article  CAS  Google Scholar 

  • Polcin J, Rapson WH (1969) Interpretation of UV and visible spectrum of lignin. Pulp Paper Mag Can 70:99–106

    Google Scholar 

  • Regalado V, Rodríguez A, Perestelo F, Carnicero A, De la Fuente G, Falcón MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716–3718

    Article  CAS  Google Scholar 

  • Rodríguez A, Carnicero A, Perestelo F, De La Fuente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    Article  Google Scholar 

  • Sun R, Mott L, Bolton J (1998) Isolation and fractional characterization of ball-milled and enzyme lignins from oil palm trunk. J Agric Food Chem 46:718–723

    Article  CAS  Google Scholar 

  • Wolfenden BS, Wilson RL (1982) Radical-cations as reference chromogenes in kinetic studies of cro-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzothiazoline-6 sulphonate). J Chem Soc Perkin Trans 2:805–812

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the projects PI 2002/064 (Gobierno Autónomo de Canarias) and REN 2002-02732/TECNO (MCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Falcón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Arzola, K., Polvillo, O., Arias, M.E. et al. Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach. Appl Microbiol Biotechnol 73, 141–150 (2006). https://doi.org/10.1007/s00253-006-0630-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0630-0

Keywords

Navigation