Skip to main content
Log in

Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

TiO2-coated surfaces are increasingly studied for their ability to inactivate microorganisms. The activity of glass coated with thin films of TiO2, CuO and hybrid CuO/TiO2 prepared by atmospheric Chemical Vapour Deposition (Ap-CVD) and TiO2 prepared by a sol–gel process was investigated using the inactivation of bacteriophage T4 as a model for inactivation of viruses. The chemical oxidising activity was also determined by measuring stearic acid oxidation. The results showed that the rate of inactivation of bacteriophage T4 increased with increasing chemical oxidising activity with the maximum rate obtained on highly active sol–gel preparations. However, these were delicate and easily damaged unlike the Ap-CVD coatings. Inactivation rates were highest on CuO and CuO/TiO2 which had the lowest chemical oxidising activities. The inactivation of T4 was higher than that of Escherichia coli on low activity surfaces. The combination of photocatalysis and toxicity of copper acted synergistically to inactivate bacteriophage T4 and retained some self-cleaning activity. The presence of phosphate ions slowed inactivation but NaCl had no effect. The results show that TiO2/CuO coated surfaces are highly antiviral and may have applications in the food and healthcare industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansari SA, Sattar SA, Springthorpe S, Wells GA, Tostowaryk W (1988) Rotavirus survival on human hands and transfer to animate and non-porous inanimate surfaces. J Clin Microbiol 26:1513–1518

    Article  CAS  Google Scholar 

  • Ansari SA, Springthorpe S, Sattar SA, Rivard S, Rahman M (1991) Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol 29:2115–2119

    Article  CAS  Google Scholar 

  • Araña J, Herrera Melián JA, Doña Rodriguez JM, González Diaz O, Viera A, Pérez Peña J, Marrero Sosa PM, Espino Jiménez V (2002) TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catal Today 76:279–289

    Article  Google Scholar 

  • Armon R, Laot N, Narkis N, Neeman I (1998) Photocatalytic inactivation of different bacteria and bacteriophages in drinking water at different TiO2 concentration with or without exposure to O2. J Adv Oxid Technol 3:145–150

    CAS  Google Scholar 

  • Aubry E, Ghazzal MN, Demange V, Chaoui N, Robert D, Billard A (2007) Poisoning prevention of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers. Surf Coat Technol 201:7706–7712

    Article  CAS  Google Scholar 

  • Belhacova L, Krysa J, Geryk J, Jirkovsky J (1999) Inactivation of microorganisms in a flow through photoreactor with an immobilised TiO2 layer. J Chem Technol Biotechnol 74:149–154

    Article  CAS  Google Scholar 

  • Blake DM, Maness P-C, Huang Z, Wolfrum EJ, Jacoby WA, Huang J (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28:1–50

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviours of ms-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37 –38 (07 July 1972); DOI https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  • Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol Lett 258(1):18–24

    Article  CAS  Google Scholar 

  • Gratia A (1936) Des relations numeriques entre bacteries lysogenes et particules de bacteriophage. Ann Inst Pasteur 57:652–676

    Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  • Horie Y, Taya M, Tone S (1998a) Effect of cell adsorption on photosterilization of Escherichia coli over titanium-dioxide-activated charcoal granules. J Chem Eng Jpn 31:922–929

    Article  CAS  Google Scholar 

  • Horie Y, Taya M, Tone S (1998b) Evaluation of photocatalytic sterilisation rates of Escherichia coli in titanium dioxide slurry irradiated with various light sources. J Chem Eng Jpn 31:577–584

    Article  CAS  Google Scholar 

  • Jung S-C, Kim B-J, Imaishi N, Cho Y-I (2005) Characterisation of a TiO2 photocatalyst film deposited by CVD and its photocatalytic activity. Chem Vap Depos 11:137–141

    Article  CAS  Google Scholar 

  • Kakita Y, Kashige N, Miake F, Watanabe K (1997) Photocatalysis-dependent inactivation of Lactobacillus phage PL-1 by a ceramics preparation. Biosci Biotechnol Biochem 61:1947–1948

    Article  CAS  Google Scholar 

  • Kakita Y, Obuchi E, Nakano K, Murata K, Kuriowa A, Miake F, Watanabe K (2000) Photocatalytic inactivation of Lactobacillus PL-1 phages by a thin film of titania. Biocontrol Sci 5:73–79

    Article  CAS  Google Scholar 

  • Kashige N, Kakita Y, Nakashima Y, Miake F, Watanabe K (2001) Mechanism of the photocatalytic inactivation of Lactobacillus casei phage PL-1 by titania thin film. Curr Microbiol 42:184–189

    Article  CAS  Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A: Chem 106:51–56

    Article  CAS  Google Scholar 

  • Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21:4631–4641

    Article  CAS  Google Scholar 

  • Koizumi Y, Taya M (2002) Photocatalytic inactivation rate of phage ms2 in titanium dioxide suspensions containing various ionic species. Biotechnol Lett 24:459–462

    Article  CAS  Google Scholar 

  • Kuhn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag H-G, Erdinger L (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77

    Article  CAS  Google Scholar 

  • Laot N, Narkis N, Neeman I, Vilanovic D, Armon R (1999) TiO2 Photocatalytic Inactivation of Selected microorganisms under various conditions: sunlight, intermittent and variable irradiation intensity, CdS augmentation and entrapment of TiO2 into sol gel. J Adv Oxid Technol 4:97

    CAS  Google Scholar 

  • Lee S, Nishida K, Otaki M, Ohgaki S (1997) Photocatalytic inactivation of phage Qβ by immobilized titanium dioxide mediated photocatalyst. Water Sci Technol 35:101–106

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomada R, Nakajima T, Wake H, (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Article  CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem 108:1–35

    Article  CAS  Google Scholar 

  • Mills A, Elliott N, Hill G, Fallis D, Durrant JR, Willis RL (2003a) Preparation and characterisation of novel thick sol–gel titania film photocatalysts. Photochem Photobiol Sci 2:591–596

    Article  CAS  Google Scholar 

  • Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003b) Thick titanium dioxide films for semiconductor photocatalysis. Photochem Photobiol A: Chem 160:185–194

    Article  CAS  Google Scholar 

  • Otaki M, Hirata T, Oghaki S (2000) Aqueous microorganisms inactivation by photocatalytic reaction. Water Sci Technol 42:103–108

    Article  CAS  Google Scholar 

  • Sagripanti J-L (1992) Metal based formulations with high microbicidal activity. Appl Environ Microbiol 58:3157–3162

    Article  CAS  Google Scholar 

  • Sagripanti J-L, Lightfoote MM (1996) Cupric and ferric ions inactivate HIV. AIDS Res Hum Retrovir 12:333–336

    Article  CAS  Google Scholar 

  • Sagripanti J-L, Routson LB, Lytle CD (1993) Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol 59:4374–4376

    Article  CAS  Google Scholar 

  • Sagripanti J-L, Routson LB, Bonifacino AC, Lytle CD (1997) Mechanism of copper-mediated inactivation of herpes simplex virus. Antimicrob Agent Chemother 41:812–817

    Article  CAS  Google Scholar 

  • Sjogren JC, Sierka RA (1994) Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl Environ Microbiol 60:344–347

    Article  CAS  Google Scholar 

  • Sunada K, Watanabe T, Hashimoto K (2003) Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol 37:4785–4789

    Article  CAS  Google Scholar 

  • Watts RJ, Kong S, Orr M, Miller GC, Henry BE (1995) Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29:95–100

    Article  CAS  Google Scholar 

  • Widdowson M-A, Glass R, Monroe S, Beard S, Bateman JW, Lurie P, Johnson C (2005) Probable transmission of norovirus on an airplane. JAMA 15:1859–1860

    Google Scholar 

  • Yates HM, Nolan MG, Sheel DW, Pemble MEJ (2006) The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. Photochem Photobiol A: Chem 179:213

    Article  CAS  Google Scholar 

  • Yates HM, Brook LA, Ditta IB, Evans P, Foster HA, Sheel DW, Steele A (2008) Photo-induced self cleaning and biocidal behaviour of titania and copper oxide multilayers. Journal of Photochemistry and Photobiology A. DOI https://doi.org/10.1016/j.jphotochem.2007.12.023

    Article  CAS  Google Scholar 

  • Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37:296–301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an EEC grant GRD1-2001-40791 “Advanced materials and manufacturing technologies for photocatalytically active surfaces”. We are grateful to Mr. Alan Robinson and Dr Mark Nolan for stearic acid oxidation data and to Professor Andrew Mills, University of Strathclyde for providing the sol–gel coated samples and M. Faulkner from University of Manchester Materials Science Centre for the scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditta, I.B., Steele, A., Liptrot, C. et al. Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79, 127–133 (2008). https://doi.org/10.1007/s00253-008-1411-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1411-8

Keywords

Navigation