Skip to main content
Log in

Enzymatic approaches in paper industry for pulp refining and biofilm control

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental impact. Specific enzymes contribute to reduce the amount of chemicals and energy required for the modification of fibers and helps to prevent the formation or development of biofilms. This review is aimed at presenting the latest progresses made in the application of enzymes as refining aids and biofilm control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhtar M, Scott GM, Swaney RE, Shipley DF (2000) Biomechanical pulping a mill-scale evaluation. Resour Conserv Recycl 28:241–252

    Article  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  Google Scholar 

  • Bajpai P (2010) Solving the problems of recycled fiber processing with enzymes. Bioresour 5(2):1–15

    Google Scholar 

  • Bhardwaj NK, Bajpai P, Bajpai PK (1996) Use of enzymes in modification of fibres for improved beatability. J Biotechnol 51(1):21–26

    Article  CAS  Google Scholar 

  • Blanco A (2003) Microbiology in papermaking. Recent Res Dev Appl Microbiol Biotechnol 1:187–134

    Google Scholar 

  • Blanco A, Negro C, Gaspar I, Tijero J (1996) Slime problems in the paper and board industry. Appl Microbiol Biotechnol 46:203–208

    Article  CAS  Google Scholar 

  • Blanco A, Negro C, Díaz L, Saarimaa V, Sundberg A, Holmbom B (2009) Influence of thermostable lipase treatment of thermomechanical pulp (TMP) on extractives and paper properties. Appita J 62(2):113–117

    CAS  Google Scholar 

  • Blanco A, Torres CE, Fuente E, Negro C (2011) New tool to monitor biofilm growth in industrial process waters. Ind Eng Chem Res 50:5766–5773

    Article  CAS  Google Scholar 

  • Blomstedt MM, Asikainen J, Lähdeniemi A, Ylönen T, Paltakari J, Hakala T (2010) Effect of xylanase treatment on dewatering properties of birch kraft pulp. Bioresour 5(2):1164–1177

    CAS  Google Scholar 

  • Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multi-species biofilms. Appl Microbiol Biotechnol 72:3916–3923

    Google Scholar 

  • Cadena E, Chriac AI, Pastor FI, Diaz P, Vidal T, Torres AL (2010a) Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp. Biotechnol Prog 26(4):960–967

    CAS  Google Scholar 

  • Cadena EM, Vidal T, Torres AL (2010b) Can the laccase mediator system affect the chemical and refining properties of the Eucalyptus pulp? Bioresour Technol 101:8199–8204

    Article  CAS  Google Scholar 

  • Cadena EM, Vidal T, Torres AL (2010c) Influence of the hexenuronic acid content on refining and ageing in Eucalyptus TCF pulp. Bioresour Technol 101(10):3554–3560

    Article  CAS  Google Scholar 

  • Camarero S, Ibarra D, Martínez A, Romero J, Gutiérrez A, del Río J (2007) Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 40:1264–1271

    Article  CAS  Google Scholar 

  • Cordeiro AL, Werner C (2011) Enzymes for antifouling strategies. J Adhes Sci Technol 25:2317–2344

    Article  CAS  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008) Microbial xylanases: review. Bioresour 3(4):1377–1402

    Google Scholar 

  • Du M, Li X, Li W (2012) Modification of bleached softwood pulp with xylanase. Adv Mater Res 393–395:855–858

    Google Scholar 

  • Ferraz A, Guerra A, Mendonza R, Masarin F, Vicentim MP, Aguiar A, Pavan PC (2008) Technological advances and mechanistic basis for fungal biopulping. Enzyme Microb Technol 43:178–185

    Article  CAS  Google Scholar 

  • Flemming H (2002) Mini-review. Biofouling in water systems cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  Google Scholar 

  • Gandinia A, Pasquini D (2012) The impact of cellulose fibre surface modification on some physico-chemical properties of the ensuing papers. Ind Crop Prod 35:15–21

    Article  Google Scholar 

  • Gil N, Gil C, Amaral ME, Costa AP, Duarte AP (2009) Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem Eng J 46:89–95

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  • Hart PW, Waite DM, Thibault L, Tomashek J, Rousseau ME, Hill C, Sabourin MJ (2009) Selective enzyme impregnation of chips to reduce specific refining energy in alkaline peroxide mechanical pulping. Holzforschung 63:418–423

    Article  CAS  Google Scholar 

  • Huang J, Lu Y, Weng J, Wu Z (2010) Improvement of refining of secondary fiber from old carton by cellulose pretreatment. East China Pulp Paper Ind 2010-05. doi:CNKI:SUN:ZZSH.0.2010-05-033

  • Huang J, Lu Y, Weng J, Wu Z (2011) Improving refining effect of old carton secondary fibers by amylase. Paper Chemicals. doi:CNKI:SUN:ZZHX.0.2011-01-013

  • Ibarra D, Monte MC, Blanco A, Martínez AT, Martínez MJ (2011) Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J Ind Microbiol Biotechnol. doi:10.1007/s10295-011-0991

  • Jefferson K (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    CAS  Google Scholar 

  • Jurasek L, Paice MG (1988) Biological treatments of pulps. Biomass 15(2):103–108

    Article  CAS  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trend in research and application of microbial cellulases. J Microbiol 6(1):41–53

    CAS  Google Scholar 

  • Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155

    Article  CAS  Google Scholar 

  • Kazymov D (2010) Biochemical modification of thermomechanical pulp fibers. Master’s Degree Program in Chemical and Process Engineering. Lappeenranta University of Technology

  • Kenealy WR, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments. Am Chem Soc ACS Symp Ser 845:210–239

    Article  CAS  Google Scholar 

  • Kerekes RJ (1990) Characterization of pulp refiners by a C-factor. Nordic Pulp Paper Res J 1:3–8

    Article  Google Scholar 

  • Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101:7882–7888

    Article  CAS  Google Scholar 

  • Ko CH, Chen FJ, Lee JJ, Tzou DLM (2011) Effects of fiber physical and chemical characteristics on the interaction between endoglucanase and eucalypt fibers. Cellulose 18:1043–1054

    Article  CAS  Google Scholar 

  • Kolari M (2003) Attachment mechanisms and properties of bacterial biofilms on non-living surfaces. Ph.D. thesis. University of Helsinki

  • Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res. doi:10.4061/2011/280696

  • Lecourt M, Meyer V, Sigoillot JC, Petit-Conil M (2010a) Energy reduction of refining by cellulases. Holzforschung 64:441–446

    Article  CAS  Google Scholar 

  • Lecourt M, Sigoillot JC, Petit-Conil M (2010b) Cellulase-assisted refining of chemical pulps: impact of enzymatic charge and refining intensity on energy consumption and pulp quality. Process Biochem 45:1274–1278

    Article  CAS  Google Scholar 

  • Lecourt M, Soranzo A, Petit-Conil M (2011) Refining of Pinus radiata and Eucalyptus kraft pulps assisted with commercial laccase mediator systems. O Papel 72(8):57–61

    CAS  Google Scholar 

  • Li K, Lei X, Lu L, Camm C (2010) Surface characterization and surface modification of mechanical pulp fibres. Pulp Paper Canada 111(1):28–33

    CAS  Google Scholar 

  • Li B, Li H, Zha Q, Bandekar R, Alsaggaf A, Ni Y (2011) Review: effects of wood quality and refining process on TMP pulp and paper quality. Bioresour 6(3):3569–3584

    Google Scholar 

  • López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7). doi:10.1101/cshperspect.a000398

  • Luo Q, Li XP, Liu Y (2011) Effects of cellulose modification on fiber surface and quality of masson pine mechanical pulp. Adv Mater Res 291:3405–3408

    Article  Google Scholar 

  • Maciel MJM, Silva AC, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the Basidiomycota: a review. Electron J Biotechnol 13. ISSN: 0717-3458

  • Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto JH, Reponen P, Maentausta O, Mettala A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzyme Microb Technol 43:169–177

    Article  CAS  Google Scholar 

  • Maloney TC, Paulapuro H (1999) The formation of pores in cell wall. J Pulp Paper Sci 25:430–436

    CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progr Energ Combust Sci 38 (4):522–550

    Google Scholar 

  • Michalopoulos DL, Gosh D, Murdoch B (2005) Enhancement of wood pulps by cellulase treatment. In: Proceedings of the 2005 TAPPI Engineering, Pulping & Environmental Conference: August 28–31. Philadelphia, PA, USA, TAPPI Press, Session 43, 7 pp, CD proceeding. TAPPI Pulping Conference Oslo, Norway

  • Molobela IP, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPSs) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4(14):1515–1524

    CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Oulahal N, Martial-Gros A, Bonneau M, Blum LJ (2007) Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innov Food Sci Emerg Technol 8:192–196

    Article  CAS  Google Scholar 

  • Ponce T, Perez O (2002) Celulasas y xilanasas en la industria. Avance Perspective 21:273–277

    Google Scholar 

  • Poorna CA, Prema P (2007) Production of cellulase free endoxylanase from novel alkalophilic thermotolerant Bacillus pumilus by solid state fermentation and its application in waste paper recycling. Bioresour Technol 98:485–490

    Article  Google Scholar 

  • Quinde A (1994) Enzymes in the pulp and paper industry: a review. quindeconsulting.ca/documents/enzymes. Accessed August 02, 2010

  • Rantanen J, Hiltunen E, Nieminen K, Kerekes R, and Paulapuro H (2011) Construction of a single bar refiner. Tappi J July: 45–51

  • Rashmi S, Nishi B (2010) Enzymatic treatment of secondary fibres for improving drainage: an overview. Ippta J 23(2):121–126

    Google Scholar 

  • Ribas L, da Silva J, Jardim C, Oliveira R, Colodette J (2011) Effect of ultrasound and xylanase treatment on the physical–mechanical properties of bleached Eucalyptus kraft pulp. Nat Resour 2:125–129

    Google Scholar 

  • Richards M, Cloete E (2010) Biofilm removal using nanozymes. In: T. Eugene Cloete, M de Kwaadsteniet, M Botes, JM López-Romero (eds) Nanotechnology in water treatment applications. Caister Academic, Norfolk. ISBN: 978-1-904455-66-0

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24(5):219–226

    Article  CAS  Google Scholar 

  • Sabourin MJ, Hart PW (2010) Enhanced fiber quality of black spruce (Picea mariana) thermomechanical pulp fiber through selective enzyme application. Ind Eng Chem Res 49:5945–5951

    Article  CAS  Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K (2009) Modification of paper properties by the pretreatment of wastepaper pulp with Graphium putredinis, Trichoderma harzianum and fusant xylanases. Bioresour Technol 100:883–889

    Article  CAS  Google Scholar 

  • Senior DJ, Mayers PR, Miller D, Sutcliffe R, Tan L, Saddler JN (1988) Selective solubilisation of xylan in pulp using a purified xylanase from Trichoderma harzianum. Biotechnol Lett 10(12):907–912

    Article  CAS  Google Scholar 

  • Simoes M, Simoes L, Vieira M (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43:573–583

    CAS  Google Scholar 

  • Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium conditions for the production of lignin degrading enzymes. Appl Microbiol Biotechnol 81:399–417

    Article  CAS  Google Scholar 

  • Singh P, Sulaiman O, Hashim R, Rupani PF, Peng LC (2010) Biopulping of lignocellulosic material using different fungal species: a review. Rev Environ Sci Biotechnol 9:141–151

    Article  CAS  Google Scholar 

  • Skals PB, Krabek A, Nielsen PH, Wenzel H (2008) Environmental assessment of enzyme assisted processing in pulp and paper industry. Int J LCA 13(2):124–132

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Review. Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Torres CE, Gibello A, Nande M, Martin M, Blanco A (2008) Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills. Appl Microbiol Biotechnol 8:889–897

    Article  Google Scholar 

  • Torres CE, Lenon G, Craperi D, Wilting R, Blanco A (2011) Enzymatic treatment for preventing biofilm formation in the paper industry. Appl Microbiol Biotechnol 92(1):95–103

    Article  CAS  Google Scholar 

  • Valchev IV, Bikov PY (2011) Pulp dewatering and refining efficiency improvement by cellulose treatment. COST Action E54 “Characterisation of the fine structure and properties of papermaking fibres using new technologies”. ISBN: 978-91-576-9007-4. 91-95

  • Van Houdt R, Michielis C (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156:626–633

    Article  Google Scholar 

  • Verhoef R, Waard P, Schols HA, Siika-aho M, Voragen AGJ (2003) Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide. Carbohydr Res 338:1851–1859

    Article  CAS  Google Scholar 

  • Verhoef R, Schols HA, Blanco A, Siika-aho M, Ratto M, Buchert J, Lenon G, Voragen AGJ (2005) Sugar composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper mill biofilm deposits. Biotechnol Bioeng 91(1):91–105

    Article  CAS  Google Scholar 

  • Wang J, Zhang WW, Liu JN, Cao YL, Bai XT, Gong YS, Cen PI, Yang MM (2010) An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Mol Biol Rep 37:3297–3302

    Article  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  Google Scholar 

  • Waung DW (2010) Optimizing enzymatic preparations of mechanical pulp through the characterization of new laccases and non-productive interactions between enzymes and lignin. Ph.D. thesis University of Toronto

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    Article  CAS  Google Scholar 

  • Yang G, Mu Y, Chen J, Zhang F (2010) Effects of enzyme-treatment on beatability of mixed poplar P-RC APMP. Chem Ind Forest Prod. doi: CNKI:SUN:LCHX.0.2010-05-012

  • Yang G, Lucia LA, Cehn J, Cao X, Liu Y (2011) Effects of enzyme pretreatment on the beatability of fast-growing poplar AMP pulp. Bioresour 6(3):2568–2580

    CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to express their appreciation to Community of Madrid for funding the project PROLIPAPEL II (S-2009/AMB-1480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, C.E., Negro, C., Fuente, E. et al. Enzymatic approaches in paper industry for pulp refining and biofilm control. Appl Microbiol Biotechnol 96, 327–344 (2012). https://doi.org/10.1007/s00253-012-4345-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4345-0

Keywords

Navigation