Skip to main content

Advertisement

Log in

The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) can be used for electricity generation via bioconversion of wastewater and organic waste substrates. MFCs also hold potential for production of certain chemicals, such as H2 and H2O2. The studies of electricity generation in MFCs have mainly focused on the microbial community formation, substrate effect on the anode reaction, and the cathode’s catalytic properties. To improve the performance of MFCs, the initiation process requires more investigation because of its significant effect on the anodic biofilm formation. This review explores the factors which affect the initiation process, including inoculum, substrate, and reactor configuration. The key messages are that optimal performance of MFCs for electricity production requires (1) understanding of the electrogenic bacterial biofilm formation, (2) proper substrates at the initiation stage, (3) focus on operational conditions affecting initial biofilm formation, and (4) attention to the reactor configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babauta JT, Nguyen HD, Beyenal H (2011) Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ Sci Technol 45:6654–6660. doi:10.1021/es200865u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babauta JT, Hung Duc N, Harrington TD, Renslow R, Beyenal H (2012) pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol Bioeng 109:2651–2662. doi:10.1002/bit.24538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Badalamenti JP, Krajmalnik-brown R, Torres CI (2013) Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions. MBio 4(3):1–8. doi:10.1128/mBio.00144-1

    Article  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485. doi:10.1126/science.1066771

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555. doi:10.1128/AEM.69.3.1548

    Google Scholar 

  • Bretschger O, Obraztsova A, Sturm C, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim B-H, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012. doi:10.1128/AEM.01087-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045. doi:10.1016/j.bios.2006.01.030

    Article  CAS  PubMed  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, Mcinerneyl MJ (1994) Oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chae K-J, Choi M-J, Lee J-W, Kim K-Y, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresourse Technol 100:3518–3525. doi:10.1016/j.biortech.2009.02.065

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006a) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006b) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494. doi:10.1016/j.elecom.2006.01.010

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913. doi:10.1007/s00253-008-1522-2

    Article  CAS  PubMed  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569. doi:10.1021/es0709831

    Google Scholar 

  • Debabov VG (2008) Electricity from microorganisms. Microbiol 77:123–131. doi:10.1134/S002626170802001X

    Article  CAS  Google Scholar 

  • Delaney GM, Bennetto HP, Mason JR, Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (2008) Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism–mediator–substrate combinations. J Chem Technol Biotechnol Biotechnol 34:13–27. doi:10.1002/jctb.280340104

    Article  Google Scholar 

  • Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sourses 195:1130–1135. doi:10.1016/j.jpowsour.2009.08.092

    Google Scholar 

  • De Schamphelaire L, Van den Bossche L, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058. doi:10.1021/es071938w

    Google Scholar 

  • Emde R, Schink B (1990) Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Arch Microbiol 153:506–512

    Article  CAS  Google Scholar 

  • Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32:170–175. doi:10.1007/BF00165883

    Article  CAS  Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air–cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880. doi:10.1007/s00253-008-1360-2

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein DA, Tender LM, Zeikus JG (2006) Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol 40:6990–6995. doi:10.1021/es061146m

    Article  CAS  PubMed  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603. doi:10.1016/j.electacta.2007.07.037

    Article  CAS  Google Scholar 

  • Fu L, You S-J, Yang F, Gao M, Fang X, Zhang G (2010) Synthesis of hydrogen peroxide in microbial fuel cell. J Chem Technol Biotechnol 85:715–719. doi:10.1002/jctb.2367

    Google Scholar 

  • Futamata H, Bretschger O, Cheung A, Kan J, Owen R, Nealson KH (2013) Adaptation of soil microbes during establishment of microbial fuel cell consortium fed with lactate. J Biosci Bioeng 115:58–63. doi:10.1016/j.jbiosc.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  • Ghangrekar MM, Shinde VB (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresoure Technol 98:2879–85. doi:10.1016/j.biortech.2006.09.050

    Google Scholar 

  • Gil G, Chang I, Kim BH, Kim M, Jang J, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  PubMed  Google Scholar 

  • Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sources 196:8293–8300. doi:10.1016/j.jpowsour.2011.06.027

    Article  CAS  Google Scholar 

  • He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air–cathode microbial fuel cell. Bioelechem 74:78–82. doi:10.1016/j.bioelechem.2008.07.007

    CAS  Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  CAS  PubMed  Google Scholar 

  • Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209. doi:10.1039/b313149a

    Article  CAS  Google Scholar 

  • Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237. doi:10.1128/AEM.70.2.1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii S, Shimoyama T, Hotta Y, Watanabe K (2008) Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol 8:6. doi:10.1186/1471-2180-8-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang X, Hu J, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc Natl Acad Sci U S A 107(39):16806–16810. doi:10.1073/pnas

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung S, Mench MM, Regan JM (2011) Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ Sci Technol 45:9069–9074. doi:10.1021/es201737g

    Article  CAS  PubMed  Google Scholar 

  • Kim BH (1999) A microbial fuel cell using wastewater as fuel. Abstr Gen Meet Am Soc Microbiol 99:586

    Google Scholar 

  • Kim BH, Chang I, Cheol Gil G, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545. doi:10.1023/A:1022891231369

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Hyun MS, Chang IS, Kim BH (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367

    CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–77. doi:10.1016/j.biortech.2006.09.036

    Google Scholar 

  • Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30. doi:10.1007/s00253-004-1845-6

    Article  CAS  PubMed  Google Scholar 

  • Li F, Sharma Y, Lei Y, Li B, Zhou Q (2010) Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl Biochem Biotechnol 160:168–181. doi:10.1007/s12010-008-8516-5

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Cheng KY, Selvam A, Wong JWC (2013) Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula. Process Biochem 48:283–288. doi:10.1016/j.procbio.2012.10.001

    Article  CAS  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493. doi:10.1021/es050316c

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Google Scholar 

  • Liu Y, Harnisch F, Fricke K, Sietmann R, Schröder U (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1012–1017. doi:10.1016/j.bios.2008.08.001

    Article  PubMed  Google Scholar 

  • Lobato J, González del Campo A, Fernández FJ, Cañizares P, Rodrigo MA (2013) Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energy 110:220–226. doi:10.1016/j.apenergy.2013.04.010

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. doi:10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–52. doi:10.1016/j.watres.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–90. doi:10.1126/science.1217412

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508. doi:10.1038/nrmicro1442

    Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotech 19:564–571. doi:10.1016/j.copbio.2008.10.005

    Google Scholar 

  • Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409. doi:10.1146/annurev-micro-092611-150104

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Blunt-Harris EL (1999) Role of humic-bound iron as an electron transfer agent in dissimilatory Fe (III) reduction. Appl Environ Microbiol 65:4252–4254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mäkinen AE, Lay C-H, Nissilä ME, Puhakka JA (2013) Bioelectricity production on xylose with a compost enrichment culture. Int J Hydrogen Energy 1–7. doi: 10.1016/j.ijhydene.2013.04.137

  • Manohar AK, Mansfeld F (2009) The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim Acta 54:1664–1670. doi:10.1016/j.electacta.2008.06.047

    Article  CAS  Google Scholar 

  • Min B, Román OB, Angelidaki I (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 30:1213–8. doi:10.1007/s10529-008-9687-4

    Article  CAS  PubMed  Google Scholar 

  • Min B, Willy F, Thygesen A, Angelidaki I (2012) Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Bioresour Technol 118:412–417

    Google Scholar 

  • Nam J-Y, Logan BE (2012) Optimization of catholyte concentration and anolyte pH in two chamber microbial electrolysis cells. Int J Hydrogen Energy 37:18622–18628. doi:10.1016/j.ijhydene.2012.09.140

    Article  CAS  Google Scholar 

  • Niessen J, Schröder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575. doi:10.1016/j.elecom.2004.04.006

    Article  CAS  Google Scholar 

  • Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–9. doi:10.1007/s00253-005-0066-y

    Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFC) for sustainable energy production. Bioresource Technol 101:1533–43. doi:10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  • Parot S, Delia M-L, Bergel A (2008) Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technol 99:4809–4816. doi:10.1016/j.biortech.2007.09.047

    Article  CAS  Google Scholar 

  • Patil SA, Harnisch F, Kapadnis B, Schröder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803–808. doi:10.1016/j.bios.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  • Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martínez AA, Müller S, Schröder U (2011) Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour Technol 102:9683–9690. doi:10.1016/j.biortech.2011.07.087

    Google Scholar 

  • Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27:168–78. doi:10.1016/j.tibtech.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  • Pisciotta JM, Zaybak Z, Call DF, Nam J, Logan BE (2012) Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78:5212–5219. doi:10.1128/AEM.00480-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B Biol Sci 84:260–276CR. doi:10.2307/80609

    Article  Google Scholar 

  • Rabaey K, Boon N, Höfte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408. doi:10.1021/es048563o

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082. doi:10.1021/es050986i

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol lett 25:1531–5

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–27. doi:10.1038/ismej.2008.1

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–8. doi:10.1016/j.tibtech.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  • Read ST, Dutta P, Bond PL, Nicoll JS, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10:98. doi:10.1186/1471-2180-10-98

    Article  PubMed Central  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–8. doi:10.1128/AEM.01444-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–8. doi:10.1128/AEM.02600-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–71

    Article  CAS  PubMed  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694. doi:10.1016/j.jpowsour.2008.02.074

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407. doi:10.1002/bit

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Hamelers VMH, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755. doi:10.1016/j.elecom.2009.07.008

    Article  CAS  Google Scholar 

  • Saito T, Mehanna M, Wang X, Cusick R, Feng Y, Hickner MA, Logan BE (2011) Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technol 102:395–398. doi:10.1016/j.biortech.2010.05.063

    Article  CAS  Google Scholar 

  • Santoro C, Lei Y, Li B, Cristiani P (2012) Power generation from wastewater using single chamber microbial fuel cells (MFC) with platinum-free cathodes and pre-colonized anodes. Biochem Eng J 62:8–16. doi:10.1016/j.bej.2011.12.006

    Article  CAS  Google Scholar 

  • Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energ 105:194–206. doi:10.1016/j.apenergy.2012.12.037

    Google Scholar 

  • Shehab N, Li D, Amy GL, Logan BE, Saikaly PE (2013) Characterization of bacterial and archaeal communities in air–cathode microbial fuel cells, open circuit and sealed-off reactors. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5025-4

    PubMed  Google Scholar 

  • Srikanth S, Venkata Mohan S, Sarma PN (2010) Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Bioresource Technol 101:5337–44. doi:10.1016/j.biortech.2010.02.028

    Article  CAS  Google Scholar 

  • Strik DPBTB, Picot M, Buisman CJN, Barriere F (2013) pH and temperature determine performance of oxygen reducing biocathodes. Electroanalysis 25:652–655. doi:10.1002/elan.201200358

    Article  CAS  Google Scholar 

  • Thygesen A, Marzorati M, Boon N, Thomsen AB, Verstraete W (2011a) Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Appl Microbiol Biotechnol 89:855–65. doi:10.1007/s00253-010-3068-3

    Google Scholar 

  • Thygesen A, Poulsen FW, Angelidaki I, Min B, Bjerre A-B (2011b) Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass Bioenerg 35:4732–4739. doi:10.1016/j.biombioe.2011.09.026

    Google Scholar 

  • Thygesen A, Poulsen FW, Min B, Angelidaki I, Thomsen AB (2009) The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technol 100:1186–91. doi:10.1016/j.biortech.2008.07.067

    Article  CAS  Google Scholar 

  • Thygesen A, Thomsen AB, Possemiers S, Verstraete W (2010) Integration of microbial electrolysis cells (MECs) in the biorefinery for production of ethanol, H2 and phenolics. Waste Biomass Valor 1:9–20. doi:10.1007/s12649-009-9007-9

  • Torres CI, Kato Marcus A, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100:872–881. doi:10.1002/bit.21821

    Article  CAS  PubMed  Google Scholar 

  • Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  Google Scholar 

  • Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–23. doi:10.1128/AEM.01387-07

    Article  Google Scholar 

  • Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek 81:665–80

    Article  CAS  PubMed  Google Scholar 

  • Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44:6036–41. doi:10.1021/es101013e

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Cheng H, Ren N, Cui D, Lin N, Wu W (2012) Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Front Environ Sci Eng 6:569–574. doi:10.1007/s11783-011-0335-1

    CAS  Google Scholar 

  • Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43:6088–6093. doi:10.1021/es900391b

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Tokash JC, Zhang F, Kim Y, Logan BE (2013) Electrochemical analysis of separators used in single-chamber, air–cathode microbial fuel cells. Electrochem Acta 89:45–51. doi:10.1016/j.electacta.2012.11.004

    Article  CAS  Google Scholar 

  • Wei J, Liang P, Cao X, Huang X (2010) A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ Sci Technol 44:3187–3191. doi:10.1021/es903758m

    Article  CAS  PubMed  Google Scholar 

  • Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596. doi:10.1016/j.copbio.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wu C-H, Lai C-Y, Lin C-W, Kao M-H (2013) Generation of power by microbial fuel cell with ferricyanide in biodegradation of benzene. CLEAN - Soil, Air, Water 41:390–395. doi:10.1002/clen.201200198

    Article  CAS  Google Scholar 

  • Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE (2013) Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol 47:2085–2091. doi:10.1021/es3027659

    Article  CAS  PubMed  Google Scholar 

  • Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6:2002–13. doi:10.1038/ismej.2012.42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Seon J, Park Y, Cho S, Lee T (2012) Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresource Technol 117:172–9. doi:10.1016/j.biortech.2012.04.078

    Article  CAS  Google Scholar 

  • Zhang F, Pant D, Logan BE (2011a) Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens Bioelectron 30:49–55. doi:10.1016/j.bios.2011.08.025

    PubMed  Google Scholar 

  • Zhang F, Xia X, Luo Y, Sun D, Call DF, Logan BE (2013) Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technol 133:74–81. doi:10.1016/j.biortech.2013.01.036

    Article  CAS  Google Scholar 

  • Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011b) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresource Technol 102:372–5. doi:10.1016/j.biortech.2010.05.090

    Article  Google Scholar 

  • Zhang Y, Angelidaki I (2012a) Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res 46:6445–6453. doi:10.1016/j.watres.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Angelidaki I (2012b) Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Water Res 46:2727–2736. doi:10.1016/j.watres.2012.02.038

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Min B, Huang L, Angelidaki I (2011c) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresource Technol 102:1166–1173. doi:10.1016/j.biortech.2010.09.044

    Article  CAS  Google Scholar 

  • Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75:3389–3395. doi:10.1128/AEM.02240-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Noori JS, Angelidaki I (2011d) Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci 4:4340. doi:10.1039/c1ee02089g

    Article  CAS  Google Scholar 

  • Zhu X, Tokash JC, Hong Y, Logan BE (2013) Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelechem 90:30–35. doi:10.1016/j.bioelechem.2012.10.004

    CAS  Google Scholar 

  • Zhuang L, Zhou S, Li Y, Yuan Y (2010) Enhanced performance of air–cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresource Technol 101:3514–3519. doi:10.1016/j.biortech.2009.12.105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Danida Fellowship Centre for supporting the research project (Biobased Electricity in Developing Countries, DFC No. 11–091 Risø). The financial support of China Scholarship Council (CSC) for Guotao Sun’s Ph.D. project is acknowledged.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Thygesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Thygesen, A., Ale, M.T. et al. The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Appl Microbiol Biotechnol 98, 2415–2427 (2014). https://doi.org/10.1007/s00253-013-5486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5486-5

Keywords

Navigation