Skip to main content
Log in

The hydro geochemical characterization of ground waters in Tunisian Chott’s region.

  • Original Article
  • Published:
Environmental Geology

Abstract

Tunisian Chott’s region is one of the most productive artesian basins in Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and by hydrologic characteristics such as the flow pattern and time of residence. The system is composed of an upper unconfined “Plio-Quaternary” aquifer with a varying thickness of 20–200 m, an intermediate confined/unconfined “Complex Terminal” aquifer about 100 m in thickness and a deeper “Continental Intercalaire” aquifer about 150 m in thickness separated by thick clay and marl layers. The dissolution of evaporites and carbonates explains part of the contained Na+, Ca2+, Mg2+, K+, SO 2−4 and Cl-, but other processes, such carbonate precipitation, also contributes to the water composition. The stable isotope composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the Plio-Quaternary aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. 2nd edn. A.A. Balkema, Rotterdam

    Google Scholar 

  • Castany G (1982) Bassin sédimentaire du Sahara septentrional (Algérie-Tunisie)—Aquifères du Continental intercalaire et du Complexe Terminal. Bulletin Bureau Recherches Géologiques Minières (BRGM). Série 2.3. 127–147

  • Celle H, Zouari K, Travi Y, Daoud A (2001) Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax. CR Acad Sci Paris 6:625–631

    Google Scholar 

  • Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Coque R (1962) La Tunisie présaharienne: étude géomorphologique. Armond Colin, Paris

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Edmunds WM, Shand P, Guendouz AH, Moula A, Mamou A, Zouari K (1997) Recharge characteristics and groundwater quality of the grand Erg oriental basin. Tech. Rep. Wd/97/46R, Vienna

  • Edmunds WM, Guendouz AH, Mamou A, Moula A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • Epstein S, Mayeda TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • El Guedri M (1999) Assessment of scaling and corrosion problems in the Kebili geothermal field, Tunisia. Report 1 in: Geothermal Training in Iceland 1999, UNU G.T.P. Iceland, pp 1–40

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complex Terminal aquifer in the Algerian Sahara. J Hydrol 11:483–495

    Google Scholar 

  • Hrnchiri M, Slim-S’Himi N (2006) Silification of sulphate evaporites and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenic trends. Sedimentology, pp 1–25

  • Kamel S, Dassi L, Zouari K, Abidi B (2005) Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia. Environ Geol 49:159–170

    Article  Google Scholar 

  • Kamel S, Dassi L, Zouari K (2006) Approche hydrogéologique et hydrochimique des échanges hydrodynamiques entre aquifers profon et superficial du basin du Djérid, Tunisie (Hydrogeological and hydrochemical approach of hydrodynamic exchanges between deep and shallow aquifers in the Djerid basin Tunisia). IAHS 51:713–730

    Google Scholar 

  • Kharaka YK, Carothers WW (1968) Oxygen and hydrogen isotope geochemistry of deep basin brines. In: Fritz JCF (ed) Handbook of environmental isotope geochemistry, 2. The terrestrial environment B, Elsevier, Amsterdam, pp 305–353

    Google Scholar 

  • Maley J (2000) Last glacial maximum lacustrine and fluviatile formation in the Tibesti and other Saharan mountains, and large scale teleconnections linked to the activity of the Subtropical Jet Stream. Global Planet Change 26:105–120

    Article  Google Scholar 

  • Maliki MA (2000) Etude hydrogéologique, hydrochimique et isotopique de système aquifère de Sfax (Tunisie). Thèse Doctorat Univ., de Tunis II

  • Mamou A (1989) Caractéristiques et évaluation et gestion des ressources en eau du Sud tunisien. Thèse Doctorat. Univ. de Paris Sud. France

  • Ortega GA, Cherry JA, Aravena R (1997) Origin of pore water and salinity in the lacustrine Aquitard overlying the regional aquifer of Mexico City. J Hydrol 197:47–69

    Article  Google Scholar 

  • OSS (2003) Système aquifère du Sahara septentrional. Observatoire du Sahara et du Sahel. Tech. Rep. 9973–856, Tunis

  • Petit Maire N, Riser J (1982) Sahara ou Sahel: Quaternaire récent du bassin de Taoudenni, Mali (Sahara or sahel, recent quaternary of the Taoudenni region in Mali). CNES, Lamy

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–923

    Google Scholar 

  • Sonntag C, Klitsch E, Lohnert EP, El Shazly EM, Munnich KO, Junghans Ch, Thorweihe U, Weistroffer K, Swailem FM (1997) Paleoclimatic information from deuterium and oxygen-18 in carbon-14 dated north Saharan groundwaters. In: Isotope hydrology 1978, Vienna. IAEA, pp 560–581

  • Swezey C (1997) Climatic and tectonic controls on Quaternary eolian sedimentary sequences of The Chott Rharsa Basin, southern Tunisia. PhD Dissertation, The University of Texas at Austin (USA)

  • Swezy C (2003) The role of climate in the creation and destruction of continental stratigraphic records: an example from the northern margin of the Sahara desert. SEPM (Society for Sedimentary Geology). Special Publ 77:207–225

    Google Scholar 

  • UNESCO (1972) Etude des ressources en eau du Sahara Septentrional. Tech Rep 6:44

    Google Scholar 

  • Yermani M (2002) Contribution à l’étude du fonctionnement hydrodynamique du système aquifère de Gafsa Nord (Tunisie centrale). Thèse Doctorat Univ. de Tunis II

  • Zouari K, Chkir N, Ouda B (2003) Palaeoclimatic variation in Maknassi basin (central Tunisia) during Holocene period using pluridisplinary approaches. IAEA. Vienna. CN 80-28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamel, S., Younes, H., Chkir, N. et al. The hydro geochemical characterization of ground waters in Tunisian Chott’s region.. Environ Geol 54, 843–854 (2008). https://doi.org/10.1007/s00254-007-0867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0867-7

Keywords

Navigation