Skip to main content
Log in

Crystallization of sodium sulfate salts in limestone

  • Special Issue
  • Published:
Environmental Geology

Abstract

Crystallization pressure of salt crystals growing in confined pores is found to be the main cause for damage to stone and masonry. In this work, the crystallization of sodium sulfate salts in Cordova Cream and Indiana limestones is investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DSC experiments indicate that sodium heptahydrate always precipitates prior to the decahydrate (mirabilite), at a temperature between 15 and 7°C in the selected stones. The threshold supersaturation for the nucleation of heptahydrate is less than 2. In constrast, mirabilite precipitates close to or below 0°C and its crystallization pattern is completely different: precipitation takes place abruptly when the threshold supersaturation is reached, which is greater than 7. Indeed, the DSC and the DMA experiments reveal the rare nature of the nucleation of mirabilite for the investigated stones. The crystallization pressure exerted by heptahydrate does not cause damage under the conditions of the cooling experiments. In contrast, mirabilite exerts a very high crystallization pressure on the pore wall causing damage of the stone; moreover, the transient stress can remain for a long period of time since the relaxation process is slow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Brodale G, Giauque WF (1957) The heat of hydration of sodium sulfate: low temperature heat capacity and entropy of sodium sulfate decahydrate—contribution from the low temperature laboratory. Department of Chemistry and Chemical Engineering, University of California, Berkeley

    Google Scholar 

  • Cardew PT, Davey RJ (1985) The kinetics of solvent-mediated phase transformations. Proc R Soc Lond Math Phys Sci 398:415–428

    Article  Google Scholar 

  • Christian JW (1975) The theory of transformation in metals and alloys, Part I: Equilibrium and general kinetic theory, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271

    Article  Google Scholar 

  • CRC Handbook of Chemistry and Physics (2007–2008) 88th edn. http://www.hbcpnetbase.com

  • Coussy O (2004) Poro mechanics. Wiley, New York

    Google Scholar 

  • Coussy O (2006) Deformation and stress from in-pore drying-induced crystallization of salt. J Mech Phys Solids 54:1517–1547

    Article  Google Scholar 

  • Delgado Rodrigues J, Manuel Mimoso J (eds) (2008) Proceedings of the international symposium on stone consolidation in cultural heritage, Laboratório Nacional de Engenharia Civil, Lisbon, ISBN 978-972-49-2135-8

  • Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater 22:1350–1367

    Article  Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  • Flatt RJ, Scherer GW (2002) Hydration and crystallization pressure of sodium sulfate: a critical review. In: Vandiver PB, Goodway M, Mass JL (eds) Materials issues in art and archaeology VI. MRS symposium proceedings, vol 712. Materials Research Society, Warrendale, pp 29–34

  • Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by C. W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52:187–203

    Article  Google Scholar 

  • Gans W (1978) Thermodynamic stability of sodium sulfate heptahydrate. Z Physikalisch Chem Neue Folge 111:39–46

    Google Scholar 

  • Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:295–303

    Article  Google Scholar 

  • Goudie A, Viles H (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  • Hamilton A, Hall C (2008) Sodium sulfate heptahydrate: a synchrotron energy-dispersive diffraction study of an elusive metastable hydrated salt. J Anal At Spectrom. doi:10.1039/b716734b

  • Hartley H, Jones BM, Hutchinson GA (1908) The spontaneous crystallisation of sodium sulfate solutions. J Chem Soc 93:825–833

    Google Scholar 

  • La Iglesia A, Gonzlilez V, Lopez-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I. Estimation of crystallization pressure. J Cryst Growth 177:111–118

    Article  Google Scholar 

  • Loewel H (1850) Observations sur la sursaturation des dissolutions salines. Ann Chim Phys 29:62–117

    Google Scholar 

  • Marliacy P, Solimando R, Bouroukba M, Schuffenecker L (2000) Thermodynamics of crystallization of sodium sulfate decahydrate in H2O–NaCl–Na2SO4: application to Na2SO4·10H2O-based latent heat storage materials. Thermochim Acta 344:85–94

    Article  Google Scholar 

  • Mehta PK, Monteiro PJM (2006) Concrete, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Nyvlt J (1995) The Ostwald rule of stage. Cryst Res Technol 30:443–449

    Article  Google Scholar 

  • Perman EP, Urry WD (1928) The dissociation of sodium sulfate decahydrate. J Chem Soc Faraday Trans 24:337–343

    Article  Google Scholar 

  • Perry’s Chemical Engineers’ Handbook (1997) In: Perry RH, Green DW (eds) McGraw-Hill. http://www.knovel.com/web/

  • Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Chapman & Hall, New York

    Google Scholar 

  • Rijniers L, Pel L, Huinink HP, Kopinga K (2005) Salt crystallization as damage mechanism in porous building materials: a nuclear magnetic resonance study. Magn Reson Imaging 23:273–276

    Article  Google Scholar 

  • Rode EYa (1933) Vapor tension in the systems: sodium sulfate–water and sodium carbonate–water. Izv Inst Fiz-Khim Anal Akad Nauk SSSR 6:97–134 (in Russian)

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement Concr Res 30:1527–1534

    Article  Google Scholar 

  • Ruiz-Agudo E, Rodriguez-Navarro C (2008) Salt weathering of ornamental stones: new methods for its prevention, Cryspom Workshop, Paris

  • Scherer GW (2004a) Stress from crystallization of salt. Cement Concr Res 34:1613–1624

    Article  Google Scholar 

  • Scherer GW (2004b) Factors affecting crystallization pressure. In: Scrivener K, Skalny J (eds) Internal sulfate attack and delayed ettringite formation. In: Proceedings of international RILEM 186-ISA workshop. PRO 35, RILEM publications, Paris, pp 139–154

  • Soehnel O (1982) Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. J Cryst Growth 57:101–108

    Article  Google Scholar 

  • Soehnel O (1983) Estimation of electrolyte crystal–aqueous solution interfacial tension. J Cryst Growth 63:174–176

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta. doi:10.1016/j.gca.2008.05.053

  • Steiger M, Kiekbusch J, Nicolai A (2008) An improved model incorporation Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr Build Mater 22:1841–1850

    Article  Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulfate. J Cult Herit 4:109–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support by the Deutsche Forschungsgemeinschaft and by the Getty Conservation Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Espinosa Marzal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa Marzal, R.M., Scherer, G.W. Crystallization of sodium sulfate salts in limestone. Environ Geol 56, 605–621 (2008). https://doi.org/10.1007/s00254-008-1441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1441-7

Keywords

Navigation