Skip to main content
Log in

Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The TaMP gene from wheat encodes an α-mannosidase induced by salt stress that functions as negative regulator of salt tolerance in plants.

Abstract

Salt stress significantly affects growth and yield of crop plants. The α-mannosidases function in protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotic cells, and they are involved in abiotic stress tolerance in plants. Previously, we identified the α-mannosidase gene TaMP in wheat (Triticum aestivum). In this study, we investigated the function of TaMP in salt stress tolerance. TaMP expression was induced in wheat leaves by salt, drought, abscisic acid, and H2O2 treatments. Overexpressing TaMP in Brachypodium distachyon was associated with a salt-sensitive phenotype. Under salt stress, the overexpressing plants had reduced height, delayed growth status, low photosynthetic rate, decreased survival rate, and diminished yield. Moreover, the overexpression of TaMP aggravated the tendency for ions to become toxic under salt stress by significantly affecting the Na+ and K+ contents in cells. In addition, TaMP could negatively regulate salt tolerance by affecting the antioxidant enzyme system capacity and increasing the reactive oxygen species accumulation. Our study was helpful to understand the underlying physiological and molecular mechanisms of salt stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2007) Arabidopsis rd29A: DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Belkhodja R, Morales F, Abadía A, Gómez-Aparisi J, Abadía J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 104:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Saad R, Zouari N, Ben-Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190

    Article  CAS  PubMed  Google Scholar 

  • Ben-Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A (2012) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35:626–643

    Article  PubMed  CAS  Google Scholar 

  • Bihmidine S, Lin J, Stone JM, Awada T, Specht JE, Clemente TE (2013) Activity of the Arabidopsis RD29A an RD29B promoter elements in soybean under water stress. Planta (Berlin) 237:55–64

    Article  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci 269:47–55

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ren Y, Zhang G, An J, Yang J, Wang Y, Wang W (2018) Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants. Plant Physiol Biochem 124:190–198

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui X, Du Y, Fu J, Yu T, Wang C, Chen M, Chen J, Ma Y, Xu Z (2018) Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Plant Biol 24:329–335

    CAS  Google Scholar 

  • Feng Y, Yin Y, Fei S (2015) Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Sci 234:163–173

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2014) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Ha H, Noh H (2011) Reactive oxygen species and oxidative stress. Contrib Nephrol 170:102–112

    Article  PubMed  Google Scholar 

  • Hayat S, Mir BA, Wani AS, Hasan SA, Irfan M, Ahmad A (2011) Screening of salt-tolerant genotypes of Brassica juncea based on photosynthetic attributes. J Plant Interact 6:53–60

    Article  CAS  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hui Z, Tian FX, Wang GK, Wang GP, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Huttner S, Veit C, Vavra U, Schoberer J, Liebminger E, Maresch D, Grass J, Altmann F, Mach L, Strasser R (2014) Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins. Plant Cell 26:1712–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C (2015) SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot 66:4683–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose AM, Maria FO, Agustina BV, Pedro DV, Maria SB, Jose H (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18–55

    Article  CAS  Google Scholar 

  • Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20:235–247

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, Schaewen AV, Koiwa H (2008) Salt Tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci USA 105:5933–5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Zhang M, Zhou S, Guo Q, Chen F, Wu J, Wang W (2016) Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Sci 248:102–115

    Article  CAS  PubMed  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Landi S, Hausman JF, Guerriero G, Esposito S (2017) Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci 8:1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane DR, Wiedemeier A, Peng L, Höfte H, Vernhettes S, Desprez T, Hocart CH, Birch RJ, Baskin TI, Burn JE, Arioli T, Betzner AS, Williamson RE (2001) Temperature-sensitive alleles of RSW2 link the KORRIGAN Endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in arabidopsis. Plant Physiol 126:278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W (2018) Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci 9:521–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111:10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G (2014) A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell 26:164–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Niu G, Zhang H, Sun Y, Sun S, Yu F, Lu S, Yang Y, Li J, Hong Z (2018) Trimming of N-glycan by Golgi-localized α-1,2-mannosidases, MNS1 and MNS2, is crucial for maintaining RSW2 protein abundance during salt stress in Arabidopsis. Mol Plant 11:678–690

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). Plos One 8:1–12

    Google Scholar 

  • Luo N, Yu X, Liu J, Jiang Y (2012) Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. Plant Sci 197:122–129

    Article  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, Wang W (2018) Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci 270:245–256

    Article  CAS  PubMed  Google Scholar 

  • Rips S, Bentley N, Jeong IS, Welch JL, Schaewen AV, Koiwa H (2014) Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell 26:3792–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N (2018) Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Res Int 2018:1–20

    Google Scholar 

  • Sakuraba Y, Bülbül S, Piao W, Choi G, Paek NC (2017) Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways. Plant J 92:1106–1120

    Article  CAS  PubMed  Google Scholar 

  • Schaewen AV, Frank J, Koiwa H (2008) Role of complex N -glycans in plant stress tolerance. Plant Signal Behav 3:871–873

    Article  Google Scholar 

  • Schaewen AV, Rips S, Jeong IS, Koiwa H (2015) Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses. Plant Signal Behav 10:1–4

    Article  CAS  Google Scholar 

  • Schoberer J, Strasser R (2018) Plant glyco-biotechnology. Seminin Cell Dev Biol 80:133–141

    Article  CAS  Google Scholar 

  • Shanazari M, Golkar P (2018) Effects of drought stress on some agronomic and bio-physiological traits of Trtiticum aestivum, Triticale, and Tritipyrum genotypes. Arch Agron Soil Sci 64:2005–2018

    Article  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Song H, Zhao R, Fan P, Wang X, Chen X, Li Y (2009) Overexpression of AtHSP90.2, AtHSP90.5 and AtHSP90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta 229:955–964

    Article  CAS  PubMed  Google Scholar 

  • Sreeman SM, Vijayaraghavareddy P, Sreevathsa R, Rajendrareddy S, Arakesh S, Bharti P, Dharmappa P, Soolanayakanahally R (2018) Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants. Front Chem 6:92–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser R, Schoberer J, Jin C, Glössl J, Mach L, Steinkellner H (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi α-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803

    Article  CAS  PubMed  Google Scholar 

  • Su LT, Li JW, Liu DQ, Zhai Y, Zhang HJ, Li XW, Zhang QL, Wang Y, Wang QY (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538:46–55

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L (2016) MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28:2161–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Plant Biol 16:123–132

    CAS  Google Scholar 

  • Volkov V, Beilby MJ (2017) Editorial: salinity tolerance in plants: mechanisms and regulation of ion transport. Front Plant Sci 8:1795–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Xia G (2018) The landscape of molecular mechanisms for salt tolerance in wheat. Crop J 6:42–47

    Article  Google Scholar 

  • Wang M, Xu Q, Yuan M (2011) Zinc homeostasis is involved in unfolded protein response under salt stress. Plant Signal Behav 6:77–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang H, Gai J, Tian X, Zhang X, Lv Y, Jian Y (2017) Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Sci Rep 7:40301–40303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Li Q, Tian F, Deng Y, Wang W, Wu Y, Yang J, Wang Y, Hao Q, Wang W (2019a) Wheat NILs contrasting in grain size show different expansin expression, carbohydrate and nitrogen metabolism that are correlated with grain yield. Field Crops Res 241:107564

    Article  Google Scholar 

  • Wang W, Wang W, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W (2019b) The involvement of wheat (Triticum aestivum L.) U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. J Int Plant Biol 00:1–21

    Google Scholar 

  • Wennberg A (2014) Food and Agriculture Organization of the United Nations: quintessence. Encycl Toxicol 3:628–630

    Article  Google Scholar 

  • Xin S, Yu G, Sun L, Qiang X, Xu N, Cheng X (2014) Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. J Plant Res 127:695–708

    Article  CAS  PubMed  Google Scholar 

  • Xing C, Liu Y, Zhao L, Zhang S, Huang X (2018) A novel MYB transcription factor regulates AsA synthesis and effects cold tolerance. Plant Cell Environ 42:832–845

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in celluar responses and tolerance to dehydration and cold stress. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Leng B, Wang B (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci 7:977

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang N, Yin Y, Liu X, Tong S, Xing J, Zhang Y, Pudake RN, Izquierdo EM, Peng H, Xin M, Hu Z, Ni Z, Sun Q, Yao Y (2017) The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiol 175:1878–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F, Qiu D, Feng J, Wei Q, Chen L, Chen M, Chang J, Yang G, He G (2018) Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248:117–137

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang G, Zhou S, Ren Y, Wang W (2017) The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci 259:71–85

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (no. 31370304) and by Funds of Shandong “Double Tops” program.

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration among all authors. WLW conceived and designed the study. YZW, RRS, MWS, QXL, GQZ, JJW, and YW performed experiments and analyzed data. WLW wrote the manuscript. WW provided vital advice on the article. All authors approved the manuscript.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

We declared that we have no conflict of interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by Chun-Hai Dong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

299_2020_2522_MOESM2_ESM.tif

Fig. S1 The expression level of TaMP and the α-mannosidases activity in the transgenic lines. (a) The expression level of TaMP in transgenic lines. (b) The activity of in transgenic Brachypodium distachyon and WT plants. The data were presented as the mean ±SD of three independent experiments (n=3). Asterisks above each column indicate statistical differences to the WT plants (*P<0.05; **P<0.01) (TIF 8156 kb)

299_2020_2522_MOESM3_ESM.tif

Fig. S2 The expression profile of TaMP and the phenotypes of transgenic lines under under ER stress. (a-b) The profile of TaMP with or without 10 mM DTT treatment. Ten-day-old wheat seedlings were treated with the respective stress-inducing agents for different time points, after which the leaves were collected and used for TaMP expression analysis. (c) The phenotypes of transgenic and WT lines without or with 10 mM DTT. The data were presented as the mean ±SD of three independent experiments (TIF 7473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, Y., Shi, R. et al. Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. Plant Cell Rep 39, 653–667 (2020). https://doi.org/10.1007/s00299-020-02522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02522-2

Keywords

Navigation