Skip to main content

Advertisement

Log in

Evaluation of distal turbulence intensity for the detection of both plaque ulceration and stenosis grade in the carotid bifurcation using clinical Doppler ultrasound

  • Ultrasound
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine the interrelationship of stenosis grade and ulceration with distal turbulence intensity (TI) in the carotid bifurcation measured using conventional clinical Doppler ultrasound (DUS) in vitro, in order to establish the feasibility of TI as a diagnostic parameter for plaque ulceration.

Methods

DUS TI was evaluated in a matched set of ulcerated and smooth-walled carotid bifurcation phantoms with various stenosis severities (30, 50, 60 and 70 %), where the ulcerated models incorporated a type 3 ulceration.

Results

Post-stenotic TI was significantly elevated owing to ulceration in the mild and moderate stenoses (P < 0.001). TI increased with stenosis severity in both the ulcerated and non-ulcerated series, with a statistically significant effect of increasing stenosis severity (P < 0.001). Whereas TI in the mild and non-ulcerated moderate stenoses was less than 20.4 ± 1.3 cm s−1, TI in the ulcerated moderate and severe models was higher than 25.6 ±1.3 cm s−1, indicating a potential diagnostic threshold.

Conclusion

We report a two-curve relationship of stenosis grade and ulceration to distal TI measured using clinical DUS in vitro. Clinical DUS measurement of distal TI may be a diagnostic approach to detecting ulceration in the mild and moderately stenosed carotid artery.

Key Points

Patients with carotid artery plaque ulcerations are at higher risk of stroke.

Clinical Doppler ultrasound is routinely used to detect carotid artery stenosis.

Doppler ultrasound turbulence intensity can detect ulceration in realistic flow models.

Turbulence intensity also increases with stenosis severity independent of ulceration.

Doppler ultrasound should help in assessing both stenosis severity and ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hankey GJ (1999) Stroke prediction and prevention by carotid endarterectomy: keep an eye on the doughnut and not just the hole. Cerebrovasc Dis 9:345–350

    Article  PubMed  CAS  Google Scholar 

  2. Eliasziw M, Streifler JY, Fox AJ et al (1994) Significance of plaque ulceration in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial. Stroke 25:304–308

    Article  PubMed  CAS  Google Scholar 

  3. Rothwell PM, Gibson R, Warlow CP (2000) Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. On behalf of the European Carotid Surgery Trialists’ Collaborative Group. Stroke 31:615–621

    Article  PubMed  CAS  Google Scholar 

  4. Prabhakaran S, Rundek T, Ramas R et al (2006) Carotid plaque surface irregularity predicts ischemic stroke: the northern Manhattan study. Stroke 37:2696–2701

    Article  PubMed  Google Scholar 

  5. Rothwell PM, Gutnikov SA, Warlow CP (2003) Reanalysis of the final results of the European Carotid Surgery Trial. Stroke 34:514–523

    Article  PubMed  CAS  Google Scholar 

  6. Wong EY, Nikolov HN, Thorne ML et al (2009) Clinical Doppler ultrasound for the assessment of plaque ulceration in the stenosed carotid bifurcation by detection of distal turbulence intensity: a matched model study. Eur Radiol 19:2739–2749

    Article  PubMed  Google Scholar 

  7. Stein PD, Sabbah HN (1974) Measured turbulence and its effect on thrombus formation. Circ Res 35:608–614

    Article  PubMed  CAS  Google Scholar 

  8. Cloutier G, Shung KK (1993) Study of red cell aggregation in pulsatile flow from ultrasonic Doppler power measurements. Biorheology 30:443–461

    PubMed  CAS  Google Scholar 

  9. Fox AJ (1993) How to measure carotid stenosis. Radiology 186:316–318

    PubMed  CAS  Google Scholar 

  10. Smith RF, Rutt BK, Fox AJ et al (1996) Geometric characterization of stenosed human carotid arteries. Acad Radiol 3:898–911

    Article  PubMed  CAS  Google Scholar 

  11. Wong EY, Thorne ML, Nikolov HN et al (2008) Doppler ultrasound compatible plastic material for use in rigid flow models. Ultrasound Med Biol 34:1846–1856

    Article  PubMed  Google Scholar 

  12. Lovett JK, Gallagher PJ, Hands LJ et al (2004) Histological correlates of carotid plaque surface morphology on lumen contrast imaging. Circulation 110:2190–2197

    Article  PubMed  CAS  Google Scholar 

  13. de Weert TT, Cretier S, Groen HC et al (2009) Atherosclerotic plaque surface morphology in the carotid bifurcation assessed with multidetector computed tomography angiography. Stroke 40:1334–1340

    Article  PubMed  Google Scholar 

  14. Ramnarine KV, Nassiri DK, Hoskins PR et al (1998) Validation of a new blood-mimicking fluid for use in Doppler flow test objects. Ultrasound Med Biol 24:451–459

    Article  PubMed  CAS  Google Scholar 

  15. Thorne ML, Poepping TL, Rankin RN et al (2008) Use of an ultrasound blood-mimicking fluid for Doppler investigations of turbulence in vitro. Ultrasound Med Biol 34:1163–1173

    Article  PubMed  Google Scholar 

  16. Holdsworth DW, Norley CJ, Frayne R et al (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20:219–240

    Article  PubMed  CAS  Google Scholar 

  17. Frayne R, Holdsworth DW, Gowman LM et al (1992) Computer-controlled flow simulator for MR flow studies. J Magn Reson Imaging 2:605–612

    Article  PubMed  CAS  Google Scholar 

  18. Poepping TL, Nikolov HN, Rankin RN et al (2002) An in vitro system for Doppler ultrasound flow studies in the stenosed carotid artery bifurcation. Ultrasound Med Biol 28:495–506

    Article  PubMed  Google Scholar 

  19. Hinze JO (1959) Turbulence: an introduction to its mechanism and theory. McGraw-Hill, New York

    Google Scholar 

  20. Yongchareon W, Young DF (1979) Initiation of turbulence in models of arterial stenoses. J Biomech 12:185–196

    Article  PubMed  CAS  Google Scholar 

  21. Tamura T, Fronek A (1990) Detection of moving flow separation in pulsatile flow and the degree of stenosis by power of Doppler shift signals. Circ Res 67:166–174

    Article  PubMed  CAS  Google Scholar 

  22. Loree HM, Kamm RD, Atkinson CM et al (1991) Turbulent pressure fluctuations on surface of model vascular stenoses. Am J Physiol 261:H644–H650

    PubMed  CAS  Google Scholar 

  23. Hutchison KJ, Karpinski E (1985) In vivo demonstration of flow recirculation and turbulence downstream of graded stenoses in canine arteries. J Biomech 18:285–296

    Article  PubMed  CAS  Google Scholar 

  24. Hjortdal JO, Pedersen EM, Hjortdal VE et al (1991) Velocity field studies at surgically imposed arterial stenoses on the abdominal aorta in pigs. J Biomech 24:1081–1093

    Article  PubMed  CAS  Google Scholar 

  25. Nygaard H, Hasenkam JM, Pedersen EM et al (1994) A new perivascular multi-element pulsed Doppler ultrasound system for in vivo studies of velocity fields and turbulent stresses in large vessels. Med Biol Eng Comput 32:55–62

    Article  PubMed  CAS  Google Scholar 

  26. Solzbach U, Wollschlager H, Zeiher A et al (1987) Effect of stenotic geometry on flow behaviour across stenotic models. Med Biol Eng Comput 25:543–550

    Article  PubMed  CAS  Google Scholar 

  27. Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng 101:157–175

    Article  Google Scholar 

  28. Ojha M, Cobbold RSC, Johnston KW et al (1989) Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J Fluid Mech 203:173–197

    Article  CAS  Google Scholar 

  29. Casty M, Giddens DP (1984) 25 + 1 channel pulsed ultrasound Doppler velocity meter for quantitative flow measurements and turbulence analysis. Ultrasound Med Biol 10:161–172

    Article  PubMed  CAS  Google Scholar 

  30. Isaaz K, Bruntz JF, Da Costa A et al (2003) Noninvasive quantitation of blood flow turbulence in patients with aortic valve disease using online digital computer analysis of Doppler velocity data. J Am Soc Echocardiogr 16:965–974

    Article  PubMed  Google Scholar 

  31. Thorne ML, Rankin RN, Steinman DA et al (2010) In vivo Doppler ultrasound quantification of turbulence intensity using a high-pass frequency filter method. Ultrasound Med Biol 36:761–771

    Article  PubMed  Google Scholar 

  32. Thorne ML, Poepping TL, Nikolov HN et al (2009) In vitro Doppler ultrasound investigation of turbulence intensity in pulsatile flow with simulated cardiac variability. Ultrasound Med Biol 35:120–128

    Article  PubMed  Google Scholar 

  33. Grant EG, Benson CB, Moneta GL et al (2003) Carotid artery stenosis: grayscale and Doppler ultrasound diagnosis—Society of Radiologists in Ultrasound consensus conference. Ultrasound Q 19:190–198

    Article  PubMed  Google Scholar 

  34. Dunmire B, Pagel G, Beach KW et al. (2001) Post stenotic flow disturbances in a steady flow model. Proc SPIE 4325:502–513. doi:10.1117/12.495782

    Google Scholar 

  35. Evans DH, McDicken WN (2000) Doppler ultrasound: physics, instrumentation and signal processing, 2nd edn. Wiley, Chichester

    Google Scholar 

  36. Cloutier G, Allard L, Durand LG (1996) Characterization of blood flow turbulence with pulsed-wave and power Doppler ultrasound imaging. J Biomech Eng 118:318–325

    Article  PubMed  CAS  Google Scholar 

  37. Ojha M, Johnston KW, Cobbold RS et al (1989) Potential limitations of center-line pulsed Doppler recordings: an in vitro flow visualization study. J Vasc Surg 9:515–520

    PubMed  CAS  Google Scholar 

  38. Haberman S, Friedman Z (1998) Multigated simultaneous spectral Doppler imaging: a new ultrasound modality. Obstet Gynecol 92:299–302

    Article  PubMed  CAS  Google Scholar 

  39. Tortoli P, Bassi L, Boni E et al (2009) ULA-OP: an advanced open platform for ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 56:2207–2216

    Article  PubMed  Google Scholar 

  40. Imbesi SG, Kerber CW (1998) Why do ulcerated atherosclerotic carotid artery plaques embolize? A flow dynamics study. AJNR Am J Neuroradiol 19:761–766

    PubMed  CAS  Google Scholar 

  41. Giannattasio C, Mancia G (2002) Arterial distensibility in humans. Modulating mechanisms, alterations in diseases and effects of treatment. J Hypertens 20:1889–1899

    Article  PubMed  CAS  Google Scholar 

  42. Benetos A, Waeber B, Izzo J et al (2002) Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens 15:1101–1108

    Article  PubMed  Google Scholar 

  43. Van Bortel LM, Spek JJ (1998) Influence of aging on arterial compliance. J Hum Hypertens 12:583–586

    Article  PubMed  Google Scholar 

  44. Mancia G, Giannattasio C, Grassi G (1998) Arterial distensibility in cardiovascular diseases. J Nephrol 11:284–288

    PubMed  CAS  Google Scholar 

  45. Hansen F, Mangell P, Sonesson B et al (1995) Diameter and compliance in the human common carotid artery–variations with age and sex. Ultrasound Med Biol 21:1–9

    Article  PubMed  CAS  Google Scholar 

  46. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28:845–856

    Article  PubMed  CAS  Google Scholar 

  47. Zhao SZ, Xu XY, Hughes AD et al (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33:975–984

    Article  PubMed  CAS  Google Scholar 

  48. Rundek T (2007) Beyond percent stenosis: carotid plaque surface irregularity and risk of stroke. Int J Stroke 2:169–171

    Article  PubMed  Google Scholar 

  49. Ahmed RM, Harris JP, Anderson CS et al (2010) Carotid endarterectomy for symptomatic, but “haemodynamically insignificant” carotid stenosis. Eur J Vasc Endovasc Surg 40:475–482

    Article  PubMed  CAS  Google Scholar 

  50. Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G (2007) CT and ultrasound in the study of ulcerated carotid plaque compared with surgical results: potentialities and advantages of multidetector row CT angiography. AJNR Am J Neuroradiol 28:1061–1066

    Article  PubMed  CAS  Google Scholar 

  51. Remonda L, Senn P, Barth A, Arnold M, Lovblad KO et al (2002) Contrast-enhanced 3D MR angiography of the carotid artery: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 23:213–219

    PubMed  Google Scholar 

  52. Nesbitt WS, Westein E, Tovar-Lopez FJ et al (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support has been provided by the Heart and Stroke Foundation of Ontario (grant #T-6427), a University Faculty Award from the Natural Sciences and Engineering Research Council of Canada (T.L.P.), and a Canadian Institutes of Health Research Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (E.Y.W.). D.W.H. is the Dr. Sandy Kirkley Chair of Musculoskeletal Research in the Schulich School of Medicine and Dentistry. The authors would like to acknowledge Philips-ATL (Philips-ATL, Bothell, USA) for the UM9 and HDI 5000 ultrasound units.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamie L. Poepping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, E.Y., Nikolov, H.N., Rankin, R.N. et al. Evaluation of distal turbulence intensity for the detection of both plaque ulceration and stenosis grade in the carotid bifurcation using clinical Doppler ultrasound. Eur Radiol 23, 1720–1728 (2013). https://doi.org/10.1007/s00330-012-2741-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2741-6

Keywords

Navigation