Skip to main content
Log in

One-dimensional gallium nitride micro/nanostructures synthesized by a space-confined growth technique

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hexagonal GaN prismatic sub-micro rods and cone nanowires have been synthesized in a large scale by a novel and controllable space-confined growth method. The as-synthesized GaN products are highly crystalline with a wurtzite structure. The prismatic rods have lengths of 15∼20 μm and diameters of 400∼500 nm enclosed by hexagonal smooth side surfaces and a pyramidal end. And the cone nanowires have average diameters of 150∼200 nm and lengths up to several tens of μm with a cone tip. The photoluminescence (PL) studies reveal prominent band-gap UV emission properties of GaN products and narrow FWHM, indicating the excellent luminescent performance and high crystal quality. For field emission characteristic of GaN nanowires, the turn-on field is about 9.5 V/μm and the current density reaches 1.0 mA/cm2 at an electric field of 18 V/ μm. The contrast experiments indicate a novel growth control can be achieved by using a graphite tube as reaction vessel. The sealed graphite tube combined with metallic initiator is greatly responsible for large-scale and uniform preparation of GaN prismatic rods and cone nanowires. Highly symmetric GaN hexagonal micropyramids are grown on a bare Si substrate. The growth mechanism and the control function of the graphite tube are demonstrated. These low-dimensional structures not only enrich semiconducting GaN family, but also are good building blocks for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002)

    Article  Google Scholar 

  2. A.E. Oberhofer, J.F. Muth, M.A.L. Johnson, Z.Y. Chen, E.F. Fleet, G.D. Cooper, Appl. Phys. Lett. 83, 2748 (2003)

    Article  ADS  Google Scholar 

  3. Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Nano Lett. 3, 343 (2003)

    Article  Google Scholar 

  4. F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Nano Lett. 4, 1975 (2004)

    Article  Google Scholar 

  5. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  6. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  7. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Science 296, 884 (2002)

    Article  ADS  Google Scholar 

  8. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  9. X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)

    Article  Google Scholar 

  10. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303, 1348 (2004)

    Article  ADS  Google Scholar 

  11. W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997)

    Article  Google Scholar 

  12. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao, Appl. Phys. Lett. 75, 2455 (1999)

    Article  ADS  Google Scholar 

  13. W. Shi, Y. Zheng, N. Wang, C. Lee, S. Lee, Adv. Mater. 13, 591 (2001)

    Article  Google Scholar 

  14. X. Duan, C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)

    Article  Google Scholar 

  15. W. Han, P. Redlich, F. Ernst, M. Ruehle, Appl. Phys. Lett. 76, 652 (2000)

    Article  ADS  Google Scholar 

  16. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 345, 377 (2001)

    Article  Google Scholar 

  17. C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng, Y.F. Chen, J. Am. Chem. Soc. 123, 2791 (2001)

    Article  Google Scholar 

  18. X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, Z. Qiao, Adv. Mater. 12, 1432 (2000)

    Article  Google Scholar 

  19. K.W. Chang, J.J. Wu, J. Phys. Chem. B 106, 7796 (2002)

    Article  Google Scholar 

  20. H.M. Kim, D.S. Kim, Y.S. Park, S.Y. Kim, T.W. Kang, K.S. Chung, Adv. Mater. 14, 991 (2002)

    Google Scholar 

  21. S.Y. Bae, H.W. Seo, D.S. Han, M.S. Park, W.S. Jang, C.W. Na, J. Park, C.S. Park, J. Cryst. Growth 258, 296 (2003)

    Article  Google Scholar 

  22. S.Y. Bae, H.W. Seo, J. Park, H. Yang, B. Kim, Chem. Phys. Lett. 376, 445 (2003)

    Article  Google Scholar 

  23. J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai, M. Zhao, J. Phys. Chem. B 108, 12024 (2004)

    Article  Google Scholar 

  24. S. Han, W. Jin, T. Tang, C. Li, D. Zhang, X. Liu, J. Han, C. Zhou, J. Mater. Res. 18, 245 (2003)

    Google Scholar 

  25. B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park, C.J. Lee, J. Phys. Chem. B 109, 11095 (2005)

    Article  Google Scholar 

  26. X. Xiang, C. Cao, H. Zhai, B. Zhang, H. Zhu, Appl. Phys. A: Mater. 80, 1129 (2005)

    Article  ADS  Google Scholar 

  27. J.C. Wang, S.Q. Feng, D.P. Yu, Appl. Phys. A: Mater. 75, 691 (2002)

    Article  ADS  Google Scholar 

  28. C. Cao, X. Xiang, H. Zhu, J. Cryst. Growth 273, 375 (2005)

    Article  Google Scholar 

  29. B. Schwenzer, J. Hu, R. Seshadri, S. Keller, S.P. DenBaars, U.K. Mishra, Chem. Mater. 16, 5088 (2004)

    Google Scholar 

  30. B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, Appl. Phys. Lett. 87, 073106 (2005)

    Article  Google Scholar 

  31. C.T. Yang, M.H. Huang, J. Phys. Chem. B 109, 17842 (2005)

    Article  Google Scholar 

  32. Z. Yu, Z. Yang, S. Wang, Y. Jin, J.G. Liu, M. Gong, X. Sun, Chem. Vapor Depos. 11, 433 (2005)

    Article  Google Scholar 

  33. J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nat. Mater. 1, 106 (2002)

    Article  ADS  Google Scholar 

  34. S. Gradecak, F. Qian, Y. Li, H.G. Park, C.M. Lieber, Appl. Phys. Lett. 87, 173111 (2005)

    Article  ADS  Google Scholar 

  35. S.Y. Bae, H.W. Seo, J. Park, H. Yang, J.C. Park, S.Y. Lee, Appl. Phys. Lett. 81, 126 (2002)

    Article  ADS  Google Scholar 

  36. X. Xiang, C. Cao, H. Zhu, Solid State Commun. 126, 315 (2003)

    Article  Google Scholar 

  37. S.Y. Bae, H.W. Seo, J. Park, H. Yang, Chem. Phys. Lett. 373, 620 (2003)

    Article  Google Scholar 

  38. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang, Nature 422, 599 (2003)

    Article  ADS  Google Scholar 

  39. J. Hu, Y. Bando, D. Golberg, Q. Liu, Angew. Chem. Int. Edit. 42, 3493 (2003)

    Article  Google Scholar 

  40. J. Hu, Y. Bando, J.H. Zhan, F.F. Xu, T. Sekiguchi, D. Golberg, Adv. Mater. 16, 1465 (2004)

    Article  Google Scholar 

  41. L.W. Yin, Y. Bando, Y.C. Zhu, D. Golberg, M.S. Li, Appl. Phys. Lett. 84, 3912 (2004)

    Article  ADS  Google Scholar 

  42. X. Sun, Y. Li, Angew. Chem. Int. Edit. 43, 3827 (2004)

    Article  Google Scholar 

  43. B. Liu, Y. Bando, C. Tang, F. Xu, J. Hu, D. Golberg, J. Phys. Chem. B 109, 17082 (2005)

    Article  Google Scholar 

  44. X.T. Zhou, T.K. Sham, Y.Y. Shan, X.F. Duan, S.T. Lee, R.A. Rosenberg, J. Appl. Phys. 97, 104315 (2005)

    Article  Google Scholar 

  45. X. Hao, J. Zhan, Y. Wu, S. Liu, X. Xu, M. Jiang, J. Cryst. Growth 280, 341 (2005)

    Article  Google Scholar 

  46. H. Li, A.H. Chin, M.K. Sunkara, Adv. Mater. 18, 216 (2006)

    Article  Google Scholar 

  47. M. Aoki, H. Yamane, M. Shimada, T. Kajiwara, S. Sarayama, F.J. DiSalvo, Cryst. Growth Design 2, 55 (2002)

    Article  Google Scholar 

  48. J.W. Orton, C.T. Foxon, Group Rep. Prog. Phys. 61, 1 (1998)

    Google Scholar 

  49. H.L. Liu, C.C. Chen, C.T. Chia, C.C. Yeh, C.H. Chen, M.Y. Yu, S. Keller, S.P. Denbaars, Chem. Phys. Lett. 345, 245 (2001)

    Article  Google Scholar 

  50. T. Azuhata, T. Sota, K. Suzuki, S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995)

    Article  ADS  Google Scholar 

  51. H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, Phys. Rev. B 56, 6942 (1997)

    Article  ADS  Google Scholar 

  52. B. Monemar, Phys. Rev. B 10, 676 (1974)

    Article  ADS  Google Scholar 

  53. J. Neugebauer, D.W.C.G. Van, Appl. Phys. Lett. 69, 503 (1996)

    Article  ADS  Google Scholar 

  54. R. Zhang, T.F. Kuech, Appl. Phys. Lett. 72, 1611 (1998)

    Article  ADS  Google Scholar 

  55. H. Morkoc, Nitride Semiconductors and Devices (Springer, Berlin, 1998), p. 154

    Google Scholar 

  56. R. Fowler, L. Nordheim, Proc. R. Soc. London A 119, 17 (1928)

    Google Scholar 

  57. Z. Zhang, H. Yuan, J. Zhou, D. Liu, S. Luo, Y. Miao, Y. Gao, J. Wang, L. Liu, L. Song, Y. Xiang, X. Zhao, W. Zhou, S. Xie, J. Phys. Chem. B 110, 8566 (2006)

    Article  Google Scholar 

  58. L. Luo, K. Yu, Z. Zhu, Y. Zhang, H. Ma, C. Xue, Y. Yang, S. Chen, Mater. Lett. 58, 2893 (2004)

    Article  Google Scholar 

  59. K.C. Kam, F.L. Deepak, G. Gundiah,C.N.R. Rao, A.K. Cheetham, Solid State Sci. 6, 1107 (2004)

    Article  Google Scholar 

  60. S.H. Sun, G.W. Meng, Y.W. Wang, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, L.D. Zhang, Appl. Phys. A 76, 287 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xiang.

Additional information

PACS

81.10.Bk; 81.07.-b; 81.05.Ea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, X., Zhu, H. One-dimensional gallium nitride micro/nanostructures synthesized by a space-confined growth technique. Appl. Phys. A 87, 651–659 (2007). https://doi.org/10.1007/s00339-007-3887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3887-y

Keywords

Navigation