Skip to main content
Log in

The role of bound states in time-dependent quantum transport

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Charge transport through a nanoscale junction coupled to two macroscopic electrodes is investigated for the situation when bound states are present. We provide numerical evidence that bound states give rise to persistent, non-decaying current oscillations in the junction. We also show that the amplitude of these oscillations can exhibit a strong dependence on the history of the applied potential as well as on the initial equilibrium configuration. Our simulations allow for a quantitative investigation of several transient features. We also discuss the existence of different timescales and address their microscopic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Landauer, IBM J. Res. Develop. 1, 233 (1957)

    Article  MathSciNet  Google Scholar 

  2. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  3. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  Google Scholar 

  4. N.D. Lang, Phys. Rev. B 52, 5335 (1995)

    Article  ADS  Google Scholar 

  5. K. Hirose, M. Tsukada, Phys. Rev. B 51, 5278 (1995)

    Article  ADS  Google Scholar 

  6. J.M. Seminario, A.G. Zacarias, J.M. Tour, J. Am. Chem. Soc. 120, 3970 (1998)

    Article  Google Scholar 

  7. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  8. J.J. Palacios, A.J. Pérez-Jiménez, E. Louis, J. Vergés, Phys. Rev. B 64, 115411 (2001)

    Article  ADS  Google Scholar 

  9. Y. Xue, S. Datta, M.A. Ratner, Chem. Phys. 281, 151 (2002)

    Article  Google Scholar 

  10. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  11. F. Evers, F. Weigend, M. Koentopp, Phys. Rev. B 69, 235411 (2004)

    Article  ADS  Google Scholar 

  12. S.V. Faleev, F. Leonard, D.A. Stewart, M. van Schilfgaarde, Phys. Rev. B 71, 195422 (2005)

    Article  ADS  Google Scholar 

  13. M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys. Condens. Matter 20, 083203 (2008)

    Article  ADS  Google Scholar 

  14. S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005)

    Article  ADS  Google Scholar 

  15. N. Bushong, N. Sai, M.D. Ventra, Nano Lett. 5, 2569 (2005)

    Article  ADS  Google Scholar 

  16. C.G. Sanchez, M. Stamenova, S. Sanvito, D.R. Bowler, A.P. Horsfield, T.N. Todorov, J. Chem. Phys. 124, 214708 (2006)

    Article  ADS  Google Scholar 

  17. N. Sai, N. Bushong, R. Hatcher, M.D. Ventra, Phys. Rev. B 75, 115410 (2007)

    Article  ADS  Google Scholar 

  18. M. Cini, Phys. Rev. B 22, 5887 (1980)

    Article  ADS  Google Scholar 

  19. G. Stefanucci, C.-O. Almbladh, Phys. Rev. B 69, 195318 (2004)

    Article  ADS  Google Scholar 

  20. A. Dhar, D. Sen, Phys. Rev. B 73, 085119 (2006)

    Article  ADS  Google Scholar 

  21. G. Stefanucci, Phys. Rev. B 75, 195115 (2007)

    Article  ADS  Google Scholar 

  22. V. Moldoveanu, V. Gudmundsson, A. Manolescu, Phys. Rev. B 76, 165308 (2007)

    Article  ADS  Google Scholar 

  23. A. Blandin, A. Nourtier, D.W. Hone, J. Phys. (Paris) 37, 369 (1976)

    Article  Google Scholar 

  24. P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984)

    Article  ADS  Google Scholar 

  25. G. Stefanucci, C.-O. Almbladh, Europhys. Lett. 67, 14 (2004)

    Article  ADS  Google Scholar 

  26. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  27. E.K.U. Gross, W. Kohn, Adv. Quantum Chem. 21, 255 (1990)

    Article  ADS  Google Scholar 

  28. C. Verdozzi, G. Stefanucci, C.-O. Almbladh, Phys. Rev. Lett. 97, 046603 (2006)

    Article  ADS  Google Scholar 

  29. Y. Zhu, J. Maciejko, T. Ji, H. Guo, J. Wang, Phys. Rev. B 71, 075317 (2005)

    Article  ADS  Google Scholar 

  30. J. Maciejko, J. Wang, H. Guo, Phys. Rev. B 74, 085324 (2006)

    Article  ADS  Google Scholar 

  31. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  32. N.E. Dahlen, R. van Leeuwen, Phys. Rev. Lett. 98, 153004 (2007)

    Article  ADS  Google Scholar 

  33. G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

    Article  ADS  Google Scholar 

  34. E. Khosravi, G. Stefanucci, S. Kurth, E.K.U. Gross, cond-mat/0803.0914 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Khosravi or S. Kurth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosravi, E., Kurth, S., Stefanucci, G. et al. The role of bound states in time-dependent quantum transport. Appl. Phys. A 93, 355–364 (2008). https://doi.org/10.1007/s00339-008-4864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4864-9

PACS

Navigation