Skip to main content
Log in

New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glass is usually opacified by small crystalline particles, called opacifiers, dispersed in the translucent vitreous matrix. To understand the glassmaking conditions used to produce calcium antimonate opacified glass, the in situ crystallization process has been studied through synthetic glasses made in the laboratory. The effects of the nature and the concentration of the antimony source, the temperature and the duration of heat-treatments on the calcium antimonates crystallization have been tested. The physico-chemical characteristics of these glasses were compared to Roman mosaic tesserae from Aquilea and Rome (1st cent. B.C.–6th cent. A.D.). We show that the glass composition (EDX), the microstructure (SEM-BSE, imaging treatment), the oxidation state of antimony in the vitreous matrices (μ-XANES) and the proportion of the crystalline phases (XRD with Rietveld refinement) are suitable parameters to assess glassmaking conditions used in ancient times. We demonstrate that opaque Roman glasses were obtained by in situ crystallization, probably using roasted stibnite Sb2O4 and by doing heat-treatment between 1 or 2 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E.S. Turner, H.P. Rooksby, Sonderband: V. Int. Glaskongreb, VIII/17–VIII/28 (1959)

  2. H.E. Foster, C.M. Jackson, Glass Technol. 46(5), 327–333 (2005)

    Google Scholar 

  3. C. Moretti, S. Hreglich, Riv. Stn. Sper. Vetro 35(5), 28–32 (2005)

    Google Scholar 

  4. M. Tite, T. Pradell, A.J. Shortland, Archaeometry 50(1), 67–84 (2008)

    Google Scholar 

  5. S. Lahlil, I. Biron, L. Galoisy, G. Morin, Bulletin de l’AFAV, 69–71 (2007)

  6. S. Lahlil, I. Biron, L. Galoisy, G. Morin, Appl. Phys. A 92(1), 109–116 (2008)

    Article  ADS  Google Scholar 

  7. J.L. Mass, M.T. Wypyski, R.E. Stone, Mater. Res. Soc. Bull. 26(1), 38–43 (2001)

    Google Scholar 

  8. A.J. Shortland, Archaeometry 44(4), 517–530 (2002)

    Article  Google Scholar 

  9. M. Bimson, I.C. Freestone, J. Glass Stud. 25, 55–64 (1983)

    Google Scholar 

  10. N. Brun, M. Pernot, B. Velde, Actes du colloque de Namur Technique et Science: les arts du verre (1989), pp. 97–109

  11. J. Henderson, Mater. Res. Soc. Symp. Proc. 185, 601–607 (1991)

    Google Scholar 

  12. J.L. Mass, R.E. Stone, M.T. Wypyski, Mater. Res. Soc. Symp. Proc. 462, 193–204 (1997)

    Google Scholar 

  13. B. Choi, C. Nelson, Y. Tsunashima, P. Balter, Med. Phys. 34, 2477 (2007)

    Article  Google Scholar 

  14. B.G. De Boer, R.A. Young, A. Sakthivel, Acta Crystallogr. C 50, 476–482 (1994)

    Google Scholar 

  15. W.A. Groen, D.J.W. Ijdo, Acta Crystallogr. C 5(44), 782–784 (1988)

    Google Scholar 

  16. L. de Viguerie, L. Beck, J. Salomon, L. Pichon, Ph. Walter, Anal. Chem. (2009). doi:10.1021/ac901141v

    Google Scholar 

  17. V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Spectrochim. Acta B 62(1), 63–68 (2007)

    Article  ADS  Google Scholar 

  18. J. Dik et al., Anal. Chem. 80(16), 6436–6442 (2008)

    Article  Google Scholar 

  19. J. Susini, M. Salomé, B. Fayard, R. Ortega, B. Kaulich, Surf. Rev. Lett. 9, 203–211 (2002)

    Article  Google Scholar 

  20. M. Yokozeki, T. Moriyasu, H. Yamashita, T. Meakawa, J. Non-Cryst. Solids 202(3), 241–247 (1996)

    Article  ADS  Google Scholar 

  21. J.Y. Tilquiln, P. Duveiller, J. Glibert, P. Claes, J. Non-Cryst. Solids 211(1–2), 95–104 (1997)

    Article  ADS  Google Scholar 

  22. H. Yamashita, S. Yamaguchi, R. Nishimura, T. Maekawa, T. Okada, Anal. Sci. 17(1), 45–50 (2001)

    Article  Google Scholar 

  23. P.T. Nicholson, J. Glass Stud. 37, 11–19 (1995)

    Google Scholar 

  24. K. Heide, E. Hartman, K. Gert, H.G. Wiedemann, Thermochim. Acta 365(1–2), 147–156 (2000)

    Article  Google Scholar 

  25. S.J. Fleming, C.P. Swan, Nucl. Instrum. Meth. B 150, 622–627 (1999)

    Article  ADS  Google Scholar 

  26. M. Feugère, J. Glass Stud. 43, 11–19 (2001)

    Google Scholar 

  27. P. Fredrickx, I. De Ryck, K. Janssens, D. Schryvers, J.-P. Petit, H. Döcking, X-Ray Spectrom. 33, 326–0333 (2004)

    Article  Google Scholar 

  28. S. Galli, M. Mastelloni, R. Ponterio, G. Sabatino, M. Triscari, J. Raman Spectrosc. 35(8–9), 622–627 (2004)

    Article  ADS  Google Scholar 

  29. V. Gedzevičiūtė, N. Welter, U. Schüssler, C. Weiss, Archaeol. Anthropol. Sci. 1, 15–29 (2009)

    Article  Google Scholar 

  30. W.E.S. Turner, J. Soc. Glass Technol. 40(1), 162–300 (1956)

    Google Scholar 

  31. I.C. Freestone, Scientist and the Past (British Museum Press, London, 1991), Chap. 3: Looking into glass

    Google Scholar 

  32. M. Pollard, C. Heron, Archaeological Chemistry (The Royal Society of Chemistry, Cambridge, 1996)

    Google Scholar 

  33. J.P. Veiga, M.O. Figueiredo, Appl. Phys. A 83(4), 547–550 (2006)

    Article  ADS  Google Scholar 

  34. Z. Zivkovic, N. Strbac, D. Grujicic, B. Boyanov, Thermochim. Acta 383, 137–143 (2002)

    Article  Google Scholar 

  35. S.E. Golunski, D. Jackson, Appl. Catal. 48, 123–135 (1989)

    Article  Google Scholar 

  36. Pline l’Ancien, Histoire Naturelle: Livre XXXIII -l’Or et l’Argent (Les Belles-Lettres, Paris, 1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lahlil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahlil, S., Biron, I., Cotte, M. et al. New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period. Appl. Phys. A 100, 683–692 (2010). https://doi.org/10.1007/s00339-010-5650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5650-z

Keywords

Navigation