Skip to main content
Log in

Synthesis of SmAlO3 nanocrystalline powders by polymeric precursor method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SmAlO3 nanocrystalline powders were successfully synthesized by the polymeric precursor method using ethylenediaminetetraacetic acid as a chelating agent. The precursor and the derived powders were characterized by thermogravimetry analysis (TG) and differential scanning calorimetry analysis (DSC), infrared spectroscopy (IR), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The results showed that pure SmAlO3 powder with orthorhombic perovskite structure could be synthesized at 800°C for 2 h without formation of any intermediate phase. The average particle size of the powder synthesized at 900°C was as low as 28 nm. Subsequently, the bulk SmAlO3 ceramics were prepared at various sintering temperatures using the synthesized powders calcined at 900°C for 2 h as starting materials. The sintering experiments indicated that the sample sintered at 1550°C for 2 h exhibited the highest relative density of 97.2% and possessed the best microwave dielectric properties of ε r=20.94, Q×f=78600 GHz and τ f=−71.8 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Takahashi, Y. Baba, K. Ezaki, Jpn. J. Appl. Phys. 30, 2339–2342 (1991)

    Article  ADS  Google Scholar 

  2. M. Fu, X. Liu, X. Chen, J. Eur. Ceram. Soc. 28, 585–590 (2008)

    Article  Google Scholar 

  3. H. Matsumoto, H. Tamura, K. Wakino, J. Appl. Phys. 30, 2347–2349 (1991)

    Article  Google Scholar 

  4. L. Khalam, M. Sebastian, J. Am. Ceram. Soc. 90, 1467–1474 (2007)

    Article  Google Scholar 

  5. S. Behera, P. Sahu, S. Pratihar, S. Bhattacharyya, Mater. Lett. 58, 3710–3715 (2004)

    Article  Google Scholar 

  6. L. Vasylechko, A. Senyshyn, U. Bismayer, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2009)

    Google Scholar 

  7. C. Huang, Y. Chen, Mater. Res. Bull. 37, 563–574 (2002)

    Article  Google Scholar 

  8. S. Cho, I. Kim, K. Hong, J. Mater. Res. 14, 114–119 (1999)

    Article  ADS  Google Scholar 

  9. D. Suvorov, M. Valant, B. Jancar, S. Skapin, Acta Chim. Slov. 48, 87–99 (2001)

    Google Scholar 

  10. B. Jancar, D. Suvorov, M. Valant, Key Eng. Mater. 206–212, 1289–1292 (2002)

    Article  Google Scholar 

  11. K. Vidyasagar, J. Gopalkrishnan, C. Rao, J. Solid State Chem. 58, 29–37 (1985)

    Article  ADS  Google Scholar 

  12. P. Padmini, T. Kutty, J. Mater. Chem. 4, 1875–1882 (1994)

    Article  Google Scholar 

  13. M. Kumar, T. Srinivasan, P. Ramasamy, C. Subramanian, Mater. Lett. 25, 171–174 (1995)

    Article  Google Scholar 

  14. A. Douy, M. Capron, J. Eur. Ceram. Soc. 23, 2075–2080 (2003)

    Article  Google Scholar 

  15. A. Ries, A. Simoes, M. Cilense, M. Zaghete, J. Varela, Mater. Charact. 50, 217–221 (2003)

    Article  Google Scholar 

  16. Z. Tian, H. Yu, Z. Wang, Mater. Chem. Phys. 106, 126–129 (2007)

    Article  Google Scholar 

  17. P. Rodrigues, O. Dantas, I. Santos, A. Souza, J. Alloys Compd. 397, 255–259 (2005)

    Article  Google Scholar 

  18. G. Huang, D. Zhou, J. Xu, Z. Zheng, Mater. Res. Bull. 40, 13–19 (2005)

    Article  Google Scholar 

  19. D. Petrov, B. Angelov, V. Lovchinov, J. Rare Earths 28, 602–605 (2010)

    Article  Google Scholar 

  20. Y. Xu, G. Huang, Y. He, Ceram. Int. 31, 21–25 (2005)

    Article  Google Scholar 

  21. H. Wang, M. Chung, Mater. Chem. Phys. 77, 853–859 (2003)

    Article  Google Scholar 

  22. Y. Xu, X. Yuan, P. Lu, G. Huang, C. Zeng, Ceram. Int. 32, 57–60 (2006)

    Article  Google Scholar 

  23. B. Hakki, P. Coleman, IRE Trans. Microwave Theor. Tech. MTT-8, 402–410 (1960)

    Article  ADS  Google Scholar 

  24. W. Courtney, IEEE Trans. Microw. Theory Tech. MTT-18, 476–485 (1970)

    Article  ADS  Google Scholar 

  25. M. Rajendran, M. Rao, J. Solid State Chem. 113, 239–247 (1994)

    Article  ADS  Google Scholar 

  26. M. Couzi, P. Huong, J. Chem. Phys. Phys.-Chim. Biol. 69, 1339 (1972)

    Google Scholar 

  27. P. Lessing, Am. Ceram. Soc. Bull. 68, 1002–1006 (1989)

    Google Scholar 

  28. H. Lu, L. Burkhart, G. Schrader, J. Am. Ceram. Soc. 74, 968–972 (1991)

    Article  Google Scholar 

  29. J. Choy, Y. Han, J. Sohn, M. Itoh, J. Am. Ceram. Soc. 78, 1169–1172 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Qiu, T. Synthesis of SmAlO3 nanocrystalline powders by polymeric precursor method. Appl. Phys. A 104, 465–469 (2011). https://doi.org/10.1007/s00339-011-6263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6263-x

Keywords

Navigation