Skip to main content
Log in

Femtosecond laser color marking of metal and semiconductor surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Color marking of rough or smooth metal (Al, Cu, Ti) and semiconductor (Si) surfaces was realized via femtosecond laser fabrication of periodic surface nanorelief, representing one-dimensional diffraction gratings. Bright colors of the surface nanorelief, especially for longer electromagnetic wavelengths, were provided during marking through pre-determined variation of the laser incidence angle and the resulting change of the diffraction grating period. This coloration technique was demonstrated for the case of silicon and various metals to mark surfaces in any individual color with a controllable brightness level and almost without their accompanying chemical surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E. Carey, C.H. Crouch, M. Shen, E. Mazur, Opt. Lett. 30, 1773 (2005)

    Article  ADS  Google Scholar 

  2. P.G. Maloney, P. Smith, V. King et al., Appl. Opt. 49, 1065 (2010)

    Article  ADS  Google Scholar 

  3. T.Y. Hwang, A.Y. Vorobyev, C. Guo, Opt. Express 19, A824 (2011)

    Article  Google Scholar 

  4. A.Y. Vorobyev, C. Guo, Phys. Rev. B 72, 195422 (2005)

    Article  ADS  Google Scholar 

  5. K. Paivasaari, J.J.J. Kaakkunen, M. Kuittinen et al., Opt. Express 15, 13838 (2007)

    Article  ADS  Google Scholar 

  6. Y. Yang, J. Yang, C. Liang, H. Wang, Opt. Express 16, 11259 (2008)

    Article  ADS  Google Scholar 

  7. Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, L. Zhao, Laser Phys. 18, 1148 (2008)

    Article  ADS  Google Scholar 

  8. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 257, 7291 (2011)

    Article  ADS  Google Scholar 

  9. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92, 041914 (2008)

    Article  ADS  Google Scholar 

  10. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 104, 053516 (2008)

    Article  ADS  Google Scholar 

  11. E. Stratakis, V. Zorba, M. Barberoglou et al., Appl. Surf. Sci. 255, 5346 (2008)

    Article  ADS  Google Scholar 

  12. E.V. Barmina, E. Stratakis, C. Fotakis, G.A. Shafeev, http://arxiv.org/ftp/arxiv/papers/1003/1003.2796.pdf

  13. B. Dusser, Z. Sagan, H. Soder, N. Faure et al., Opt. Express 18, 2913 (2009)

    Article  ADS  Google Scholar 

  14. V.P. Korolkov, A.A. Ionin, S.I. Kudryashov et al., Quantum Electron. 41, 387 (2011)

    Article  ADS  Google Scholar 

  15. L. Guo, L. Xiao, Y. Hong, Q. Rong, H. Wen, Chin. Opt. Lett. 4, 72 (2011)

    Google Scholar 

  16. E.V. Golosov, A.A. Ionin, S.I. Kudryashov et al., Appl. Phys. A 104, 701 (2011)

    Article  ADS  Google Scholar 

  17. H. Lochbihler, Opt. Express 17, 12189 (2009)

    Article  ADS  Google Scholar 

  18. X. Li, C. Yuan, H. Yang, J. Li, W. Huang, D. Tang, Q. Xu, Appl. Surf. Sci. 256, 4344 (2010)

    Article  ADS  Google Scholar 

  19. E.V. Golosov, A.A. Ionin, S.I. Kudryashov et al., Nanotechnol. Russ. 3–4, 237 (2011)

    Article  Google Scholar 

  20. E.V. Golosov, A.A. Ionin, S.I. Kudryashov et al., Phys. Rev. B 83, 115426 (2011)

    Article  ADS  Google Scholar 

  21. S.A. Akhmanov, V.I. Emel’yanov, N.I. Koroteev, V.N. Seminogov, Sov. Phys. Usp. 28, 1084 (1985)

    Article  ADS  Google Scholar 

  22. S.I. Kudryashov, V.I. Emel’yanov, JETP Lett. 73, 228 (2001)

    Article  ADS  Google Scholar 

  23. D.J. Hwang, C.P. Grigoropoulos, J. Appl. Phys. 99, 083101 (2006)

    Article  ADS  Google Scholar 

  24. S. Lee, D. Yang, S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008)

    Article  ADS  Google Scholar 

  25. S.G. Gorny, G.V. Odintsova, A.V. Otkeeva, V.P. Veiko, Proc. SPIE 7996, 799605 (2011)

    Google Scholar 

  26. A.M. Prokhorov, V.A. Sychugov, A.V. Tischenko, A.A. Khakimov, Pis’ma Zh. Tekh. Fiz. 8, 961 (1982)

    Google Scholar 

  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  28. V.V. Klimov, Nanoplasmonics (Singapore, Pan Stanford, 2011)

    Google Scholar 

  29. S.I. Kudryashov, V.I. Emel’yanov, JETP Lett. 94, 94 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for basic research (project nos. 10-08-00941-a, 11-02-01202-a, 11-08-01165-a, and 12-02-91001-ANF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey I. Kudryashov or Sergey V. Makarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionin, A.A., Kudryashov, S.I., Makarov, S.V. et al. Femtosecond laser color marking of metal and semiconductor surfaces. Appl. Phys. A 107, 301–305 (2012). https://doi.org/10.1007/s00339-012-6849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6849-y

Keywords

Navigation