Skip to main content
Log in

Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3x[SrTiO3] composites ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, lead-free 100−x(Bi0.5Na0.5)TiO3x[SrTiO3] composites ceramics with (0≤x≤9) were synthesized by the solid-state reaction method. Their structure, dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction patterns, Rietveld refinement data and Raman spectra revealed that the SrTiO3 cubic structure was completely diffused into the (Bi0.5Na0.5)TiO3 lattice with rhombohedral structure. The scanning electron microscopy images showed change in grain morphology from rectangular-like to quasi-spherical grain with increase in SrTiO3 content. The dielectric permittivity increases, the Curie temperature decreases and the peaks become broaden with raise of SrTiO3 content. Ferroelectric and piezoelectric properties of these composites ceramics showed degenerated behavior with increase of SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.X. He, C.E. Li, Z.-Y. Wang, H.X. Yan, W. Liu, Phys. Status Solidi A 179, 275–283 (2000)

    Article  ADS  Google Scholar 

  2. R.P. Tandon, J. Korean Phys. Soc. 32, S327–S329 (1998)

    Google Scholar 

  3. S.G. Lee, J. Korean Phys. Soc. 45, 1611–1614 (2004)

    Google Scholar 

  4. Z. Jiwei, Y. Xi, W. Mingzhong, Z. Liangying, J. Phys. D, Appl. Phys. 34, 1413–1416 (2001)

    Article  ADS  Google Scholar 

  5. Z. Jiwei, Y. Xi, Z. Liangying, J. Electroceram. 5, 211–216 (2000)

    Article  Google Scholar 

  6. J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, Phys. Status Solidi (b). Basic Solid State Phys. 241, 1949–1956 (2004)

    Article  ADS  Google Scholar 

  7. T. Maiti, R. Guo, A.S. Bhalla, Appl. Phys. Lett. 89, 122909–122911 (2006)

    Article  ADS  Google Scholar 

  8. J. Wu, D. Xiao, J. Zhu, Recent. Patents Mater. Sci. 2, 140–153 (2009)

    Article  Google Scholar 

  9. N. Thongmee, A. Watcharapasorn, S. Jiansirisomboon, Adv. Mater. Res. 55, 837–840 (2008)

    Article  Google Scholar 

  10. M.P. Chun, K.M. Kang, J.H. Cho, B.-I. Kim, J. Korean Phys. Soc. 59, 2583–2588 (1911)

    Google Scholar 

  11. H. Sun, D. Peng, X. Wang, M. Tang, Q. Zhang, X. Yao, J. Appl. Phys. 110, 016102–016104 (2011)

    Article  ADS  Google Scholar 

  12. Y. Wang, Z. Wang, H. Xu, D. Li, J. Alloys Compd. 484, 230–232 (2009)

    Article  Google Scholar 

  13. G. Picht, J. Töpfer, E. Hennig, J. Eur. Ceram. Soc. 30, 3445–3453 (2010)

    Article  Google Scholar 

  14. W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, J. Eur. Ceram. Soc. 30, 1827–1832 (2010)

    Article  Google Scholar 

  15. K. Katayama, K. Kato, T. Takenaka, M. Takata, K. Shinozaki, Key Eng. Mater. 350, 93–96 (2007)

    Article  Google Scholar 

  16. K. Kato, T. Takenaka, M. Takata, K. Shinozaki, Key Eng. Mater. 388, 229–232 (2008)

    Google Scholar 

  17. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys., Solid State 2, 2651–2654 (1961)

    Google Scholar 

  18. Y. Yuan, X.H. Zhou, C.J. Zhao, B. Li, S.R. Zhang, J. Electron. Mater. 39, 2471–2475 (2010)

    Article  ADS  Google Scholar 

  19. G.C. Edwards, S.H. Choy, H.L.W. Chan, D.A. Scott, A. Batten, Appl. Phys. A, Mater. Sci. Process. 88, 209–215 (2007)

    Article  ADS  Google Scholar 

  20. J. Li, F. Wang, X. Qin, M. Xu, W. Shi, Appl. Phys. A, Mater. Sci. Process. 104, 117–122 (2011)

    Article  ADS  Google Scholar 

  21. M. Xu, F. Wang, T. Wang, X. Chen, Y. Tang, W. Shi, J. Mater. Sci. 46, 4675–4682 (2011)

    Article  ADS  Google Scholar 

  22. D. Lin, K.W. Kwok, J. Mater. Sci., Mater. Electron. 21, 1119–1124 (2010)

    Google Scholar 

  23. D. Lin, Q. Zheng, C. Xu, K.W. Kwok, Appl. Phys. A, Mater. Sci. Process. 93, 549–558 (2008)

    Article  ADS  Google Scholar 

  24. C. Berbecaru, M. Cernea, G.V. Aldica, R. Trusca, World Acad. Sci., Eng. Technol. 79, 147–150 (2011)

    Google Scholar 

  25. N.B. Do, H.B. Lee, C.H. Yoon, J.K. Kang, J.S. Lee, Trans. Electr. Electron. Mater. 21, 64–67 (2011)

    Article  Google Scholar 

  26. D. Ijuu, T. Kimura, J. Am. Ceram. Soc. 94, 3291–3295 (2011)

    Article  Google Scholar 

  27. D. Lin, K.W. Kwok, H.L.W. Chan, J. Alloys Compd. 94, 3291–3295 (2011)

    Google Scholar 

  28. S. Fuentes, R.A. Zarate, E. Chavez, P. Muñoz, D. Díaz-Droguett, P. Leyton, J. Mater. Sci. 45, 1448–1452 (2010)

    Article  ADS  Google Scholar 

  29. W. Jauch, A. Palmer, Phys. Rev. B, Condens. Matter 60, 2961–2963 (1999)

    Article  ADS  Google Scholar 

  30. P.K. Petrov, E.F. Carlsson, P. Larsson, M. Friesel, Z.G. Ivanov, J. Appl. Phys. 84, 3134–3140 (1998)

    Article  ADS  Google Scholar 

  31. http://www.ing.unitn.it/~maud/

  32. M. Ferrari, L. Lutterotti, J. Appl. Phys. 76, 7246–7255 (1994)

    Article  ADS  Google Scholar 

  33. H.M. Rietveld, Acta Crystallogr. 2, 65–71 (1967)

    Google Scholar 

  34. L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Suppl. Issues Z. Kristallogr. 26, 125–130 (2007)

    Article  Google Scholar 

  35. H.R. Wenk, L. Lutterotti, S.C. Vogel, Powder Diffr. 25, 283–296 (2010)

    Article  ADS  Google Scholar 

  36. I. Lonardelli, H.-R. Wenk, L. Lutterotti, M. Goodwin, J. Synchrotron Radiat. 12, 354–360 (2005)

    Article  Google Scholar 

  37. R. Ranjan, A. Dviwedi, Solid State Commun. 135, 394–399 (2005)

    Article  ADS  Google Scholar 

  38. Y.A. Abramov, V.G. Tsirelson, V.E. Zavodnik, S.A. Ivanov, I.D. Brown, Acta Crystallogr., B Struct. Crystallogr. Cryst. Chem. 39, 942–951 (1983)

    Google Scholar 

  39. A.Z. Simões, L.S. Cavalcante, F. Moura, E. Longo, J.A. Varela, J. Alloys Compd. 509, 5326–5335 (2011)

    Article  Google Scholar 

  40. http://www.crystalimpact.com/diamond/

  41. J. Petzelt, S. Kamba, J. Fábry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, G.E. Kugel, J. Phys. Condens. Matter 16, 2719–2731 (2004)

    Article  ADS  Google Scholar 

  42. http://en.wikipedia.org/wiki/Octahedron

  43. http://en.wikipedia.org/wiki/Cuboctahedron

  44. V.M. Longo, M.G.S. Costa, A.Z. Simões, I.L.V. Rosa, C.O.P. Santos, J. Andrés, E. Longo, J.A. Varela, Phys. Chem. Chem. Phys. 12, 7566–7579 (2010)

    Article  Google Scholar 

  45. L.S. Cavalcante, V.S. Marques, J.C. Sczancoski, M.T. Escote, M.R. Joya, J.A. Varela, M.R.M.C. Santos, P.S. Pizani, E. Longo, Chem. Eng. J. 143, 299–307 (2008)

    Article  Google Scholar 

  46. D. Rout, K.S. Moon, S.J.L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102–084108 (2010)

    Article  ADS  Google Scholar 

  47. B.W.V. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Phys. Rev. B, Condens. Matter 82, 104112 (2010)

    Article  ADS  Google Scholar 

  48. http://www.sigmaplot.com/products/peakfit/peakfit.php

  49. M.D. Domenico Jr., S.H. Wemple, S.P.S. Porto, P.R. Buman, Phys. Rev. 174, 522–530 (1968)

    Article  ADS  Google Scholar 

  50. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085–8091 (2001)

    Article  ADS  Google Scholar 

  51. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M.S. Li, J. Phys. D, Appl. Phys. 42, 175414–175433 (2009)

    Article  ADS  Google Scholar 

  52. J. Suchanicz, I. Jankowska-Sumara, T.V. Kruzina, J. Electroceram. 27, 45–50 (2011)

    Article  Google Scholar 

  53. A. Ramasubramaniam, V.B. Shenoy, Acta Mater. 53, 2943–2956 (2005)

    Article  Google Scholar 

  54. X.F. Cheng, X.G. Tang, S.G. Ju, Y.P. Jiang, Q.X. Liu, Adv. Mater. Res. 311–313, 1481–1484 (2011)

    Article  Google Scholar 

  55. C. Zhi-Hui, D. Jian-Ninga, M. Lin, Y. Ning-Yia, Z. Yuan-Yuan, J. Alloys Compd. 509, 482–485 (2011)

    Article  Google Scholar 

  56. K.J. Yoon, D.N. Yoon, S.J.L. Kang, Ceram. Int. 16, 151–155 (1990)

    Article  Google Scholar 

  57. M. Hosokawa, K. Nogi, M. Naito, T.U. Yokoyama, Nanoparticle Technology Handbook (2008), p. 312

    Google Scholar 

  58. T. Badapanda, V. Senthil, S.K. Rout, L.S. Cavalcante, A.Z. Simões, T.P. Sinha, S. Panigrahi, M.M. de Jesus, E. Longo, J.A. Varela, Curr. Appl. Phys. 11, 1282–1293 (2011)

    Article  ADS  Google Scholar 

  59. S.K. Rout, P.K. Barhai, S. Panigrahi, I.W. Kim, J. Electroceram. 23, 37–42 (2009)

    Article  Google Scholar 

  60. J. Bera, S.K. Rout, J. Electroceram. 18, 33–37 (2007)

    Article  Google Scholar 

  61. L.I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970). Chap. 16

    Google Scholar 

  62. L.J. Wu, J.M. Wu, J. Cryst. Growth 308, 424–429 (2007)

    Article  ADS  Google Scholar 

  63. R. Thomas, V.K. Varadan, S. Komarneni, D.C. Dube, J. Appl. Phys. 90, 1480–1489 (2001)

    Article  ADS  Google Scholar 

  64. T. Wang, H. Du, X. Shi, Inst. Phys. Conf. Ser. 152, 012065–012071 (2009)

    Article  ADS  Google Scholar 

  65. D. Lin, K.W. Kwok, H.L.W. Chan, J. Alloys Compd. 481, 310–315 (2009)

    Article  Google Scholar 

  66. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 262904–262906 (2008)

    Article  ADS  Google Scholar 

  67. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916–2922 (1990)

    Article  ADS  Google Scholar 

  68. C.R. Zhou, X.Y. Liu, Bull. Mater. Sci. 30, 575–578 (2007)

    Article  Google Scholar 

  69. N. Lei, M. Zhu, P. Yang, L. Wang, L. Wang, Y. Hou, H. Yan, J. Appl. Phys. 109, 054102–054108 (2011)

    Article  ADS  Google Scholar 

  70. P. Jaita, A. Watcharapasorn, S. Jiansirisomboon, Curr. Appl. Phys. (2012). doi:10.1016/j.cap.2011.03.012

    Google Scholar 

  71. R. Dittmer, W. Jo, J. Daniels, S. Schaab, J. Rodel, J. Am. Ceram. Soc. (2012). doi:10.1111/j.1551-2916.2011.04631.x

    Google Scholar 

  72. Q. Zhou, C. Zhou, W.Z. Li, J. Cheng, H. Wang, C. Yuan, J. Phys. Chem. Solids 72, 909–913 (2011)

    Article  ADS  Google Scholar 

  73. J. Yoo, D. Oh, Y. Jeong, J. Hong, M. Junge, Mater. Lett. 58, 3831–3835 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian research financing institutions: FAPESP (No. 2009/50303-4), CNPq (159710/2011-1), GERATEC (No. 01.08.0506.00) and CAPES. Special thanks to Prof. Dr. Sanjeeb Kumar Rout for consolidating the partnership of this research between India and Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Cavalcante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parija, B., Rout, S.K., Cavalcante, L.S. et al. Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3x[SrTiO3] composites ceramics. Appl. Phys. A 109, 715–723 (2012). https://doi.org/10.1007/s00339-012-7105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7105-1

Keywords

Navigation