Skip to main content
Log in

Oxidation of bismuth nanodroplets deposit on GaAs substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth nanodroplets on GaAs substrate were obtained by metalorganic vapor phase epitaxy (MOVPE). New products have been synthesized when Bi nanodroplets are heated under oxygen atmosphere. The oxidation process of Bi nanodroplets consists of a heating from the room temperature to different oxidation temperatures (350, 500, 600 C) with a temperature rate of 14 C/min. The annealing duration was fixed to 30 min. The presence of oxygen in the products was confirmed by energy dispersive X-ray (EDX) measurements using a scanning electron microscope (SEM). SEM images show that Bi microcomposites density decrease and their size increases with increasing annealing temperature. After X-ray diffraction analysis of the products no obvious peaks could be observed. The reflectance spectra of the products were studied in spectral domains ranged from 200 nm to 1100 nm. By fitting the reflectivity signal, we extracted the thickness of the products and their refractive index variation versus wavelength. The results show that the thickness of the samples increases with increasing annealing temperature. The photoluminescence (PL) spectra under excitation at 325 nm shows a broad emission centered at around 1.92 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Fitouri, I. Moussa, A. Rebey, B. El Jani, J. Cryst. Growth 300, 347 (2007)

    Article  ADS  Google Scholar 

  2. W.Y. Jiang, J.Q. Liu, M.G. So, K. Myrtle, K.L. Kavanagh, S.P. Watkins, J. Cryst. Growth 277, 85 (2005)

    Article  ADS  Google Scholar 

  3. C. Li, Z.Q. Zeng, D.S. Fan, Y. Hirono, J. Wu, T.A. Morgan, X. Hu, S.Q. Yu, Zh.M. Wang, G.J. Salamo, Appl. Phys. Lett. 99, 243113 (2011)

    Article  ADS  Google Scholar 

  4. R.A. Ismail, J. Surf. Sci. Nanotechnol. 4, 563 (2006)

    Article  Google Scholar 

  5. L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surf. Sci. 507–510, 480 (2002)

    Article  Google Scholar 

  6. J. George, B. Prodeep, K.S. Joseph, Thin Solid Films 144, 255 (1986)

    Article  ADS  Google Scholar 

  7. S. Condurache-Bota, N. Tigau, A.P. Rambu, G.G. Rusu, G.I. Rusu, Appl. Surf. Sci. 257, 10545 (2011)

    Article  ADS  Google Scholar 

  8. L. Leontie, M. Caraman, A. Visinoiu, G.I. Rusu, Thin Solid Films 473(2), 230 (2005)

    Article  ADS  Google Scholar 

  9. R.B. Patil, J.B. Yadav, R.K. Puri, V. Puri, J. Phys. Chem. Solids 68, 665 (2007)

    Article  ADS  Google Scholar 

  10. H. Weidong, Q. Wei, X. Wu, N. Hailong, Mater. Lett. 61, 4100 (2007)

    Article  Google Scholar 

  11. T.P. Gujar, V.R. Shinde, C.D. Lokhande, Appl. Surf. Sci. 254, 4186 (2008)

    Article  ADS  Google Scholar 

  12. V. Dimitrov, S. Sakka, J. Appl. Phys. 79(3), 1736 (1996)

    Article  ADS  Google Scholar 

  13. P. Shuk, H.-D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ion. 89, 179 (1996)

    Article  Google Scholar 

  14. H.T. Fan, S.S. Pan, X.M. Teng, C. Ye, G.H. Li, L.D. Zhang, Thin Solid Films 513, 142 (2006)

    Article  ADS  Google Scholar 

  15. P. Zhou, G.J. You, Y.G. Li, T. Han, J. Li, S.Y. Wang, L.Y. Chen, Appl. Phys. Lett. 83, 3876 (2003)

    Article  ADS  Google Scholar 

  16. M. Karimi, R. Tu, J. Peng, W. Lennard, G.H. Chapman, K.L. Kavanagh, Thin Solid Films 515, 3760 (2007)

    Article  ADS  Google Scholar 

  17. E.Y. Wang, K.A. Pandelisev, J. Appl. Phys. 52, 4818 (1981)

    Article  ADS  Google Scholar 

  18. J. George, B. Pradeep, K.S. Joseph, Phys. Status Solidi, a Appl. Res. 100, 513 (1987)

    Article  ADS  Google Scholar 

  19. N.M. Sammes, G.A. Tompsett, H. Nafe, F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999)

    Article  Google Scholar 

  20. W.K. Ford, T. Guo, K.-J. Wan, Phys. Rev. B 45, 11896 (1992)

    Article  ADS  Google Scholar 

  21. C.W. Wilmsen, Thin Solid Films 39, 105 (1976)

    Article  ADS  Google Scholar 

  22. D.N. Butcher, B.J. Sealy, J. Phys. D, Appl. Phys. 11, 1451 (1978)

    Article  ADS  Google Scholar 

  23. H. Fitouri, I. Moussa, A. Rebey, A. Fouzri, B. El Jani, J. Cryst. Growth 295, 114 (2006)

    Article  ADS  Google Scholar 

  24. M. Takeuchi, T. Takeyama, N. Takahashi, T. Nakamura, Electrochemistry 73(12), 1030 (2005)

    Google Scholar 

  25. S.W. Kang, S.W. Rhee, Thin Solid Films 468, 79 (2004)

    Article  ADS  Google Scholar 

  26. T. Takeyama, N. Takahashi, T. Nakamur, S. Ito, J. Phys. Chem. Solids 65, 1349 (2004)

    Article  ADS  Google Scholar 

  27. J.C.G. de Sande, T. Missana, C.N. Afonso, J. Appl. Phys. 80, 7023 (1996)

    Article  ADS  Google Scholar 

  28. R. Atkinson, P.H. Lissberger, Thin Solid Films 17, 207 (1973)

    Article  ADS  Google Scholar 

  29. W.G. Breiland, K.P. Killeen, J. Appl. Phys. 78, 6726 (1995)

    Article  ADS  Google Scholar 

  30. M. Born, E.R. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, New York, 1980)

    Google Scholar 

  31. H.T. Fan, X.M. Teng, S.S. Pan, C. Ye, G.H. Li, L.D. Zhang, Appl. Phys. Lett. 87, 231916 (2005)

    Article  ADS  Google Scholar 

  32. D. Franta, I. Ohlidal, Opt. Commun. 248, 459 (2005)

    Article  ADS  Google Scholar 

  33. H. Fitouri, Z. Benzarti, I. Halidou, T. Boufaden, B. El Jani, Phys. Status Solidi, a Appl. Res. 202(13), 2467 (2005)

    Article  ADS  Google Scholar 

  34. I. Massoudi, M.M. Habchi, A. Rebey, B. El Jani, J. Cryst. Growth 353, 77 (2012)

    Article  ADS  Google Scholar 

  35. C. Mansilla, Solid State Sci. 11, 1456 (2009)

    Article  ADS  Google Scholar 

  36. A.A. Agasiev, A.K. Zeinally, S.J. Alekperov, Y.Y. Guseinov, Mater. Res. Bull. 21, 765 (1986)

    Article  Google Scholar 

  37. L. Kumari, J.H. Lin, Y.R. Ma, Nanotechnology 18, 295605 (2007)

    Article  Google Scholar 

  38. A.M. Srivastava, W.W. Beers, J. Lumin. 81, 293 (1999)

    Article  Google Scholar 

  39. G. Blasse, G.J. Dirksen, J. Phys. Chem. 91, 20 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from DGRST and the Third World Academy of Sciences (TWAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fitouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitouri, H., Boussaha, R., Rebey, A. et al. Oxidation of bismuth nanodroplets deposit on GaAs substrate. Appl. Phys. A 112, 701–710 (2013). https://doi.org/10.1007/s00339-013-7759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7759-3

Keywords

Navigation