Skip to main content
Log in

Synthesis at the nanoscale of ZnO into poly(methyl methacrylate) and its characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, PMMA/ZnO nanocomposites have been prepared by a very simple, facile and versatile chemical approach. The prepared PMMA/ZnO nanocomposites possess no color, high transparency, good thermal stability, UV-shielding capability, luminescence and homogeneity. The chemical process involved solution mixing of ZnO nanoparticles dispersed in DMAc with the Polymethylmethacrylate (PMMA) matrix dissolved in the same solvent. The effect of ZnO content on the physical properties of the PMMA matrix is investigated by X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, UV–Vis absorption and photoluminescence spectroscopy. It was found that pure hexagonal ZnO nanoparticles with an average particle size of 4–8 nm were homogeneously dispersed in the PMMA matrix. A significant improvement in thermal properties was observed with the incorporation of 1.0 wt% ZnO nanoparticles. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurement of room temperature photoluminescence spectra shows intensive near-band edge emission peak at 3.28 eV without any structural defects for a nanocomposite film with a filler content of 1.0 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, H.H. Horhold, Adv. Mater. 12, 1689 (2000)

    Article  Google Scholar 

  2. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)

    Article  ADS  Google Scholar 

  3. G. Kickelbick, Prog. Polym. Sci. 28, 83 (2003)

    Article  Google Scholar 

  4. M. Agrawal, A. Pich, S. Gupta, N.E. Zafeiropoulos, J.R. Retama, M. Stamm, J. Mater. Chem. 18, 2581 (2008)

    Article  Google Scholar 

  5. M. Agrawal, A. Pich, N.E. Zafeiropoulos, M. Stamm, Colloid Polym. Sci. 286, 593 (2008)

    Article  Google Scholar 

  6. M. Agrawal, N.E. Zafeiropoulos, S. Gupta, E. Svetushkina, A. Pich, M. Stamm, Macromol. Rapid Commun. 31, 405 (2010)

    Article  Google Scholar 

  7. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102 (2000)

    Article  Google Scholar 

  8. C.H. Dan, Y.D. Kim, M. Lee, B.H. Min, J.H. Kim, J. Appl. Polym. Sci. 108, 2128 (2008)

    Article  Google Scholar 

  9. T.K. Leodidou, P. Margraf, W. Caseri, U.W. Suter, P. Walther, Polym. Adv. Technol. 8, 505 (1997)

    Article  Google Scholar 

  10. R.F. Mulligan, A.A. Iliadis, P. Kofinas, J. Appl. Polym. Sci. 89, 1058 (2003)

    Article  Google Scholar 

  11. I.W. Mikrajuddin Lenggoro, K. Okuyama, F.G. Shi, J. Electrochem. Soc. 149, H107 (2002)

    Article  Google Scholar 

  12. M.R. Bockstaller, R.A. Mickiewicz, E.L. Thomas, Adv. Mater. 17, 1331 (2005)

    Article  Google Scholar 

  13. S.M. De Paul, J.W. Zwanziger, R. Ulrich, U. Wiesner, H.W. Spiess, J. Am. Chem. Soc. 121, 5727 (1999)

    Article  Google Scholar 

  14. L.H. Lee, W.C. Chen, Chem. Mater. 13, 1137 (2001)

    Article  Google Scholar 

  15. J.Y. Wen, G.L. Wilkes, Chem. Mater. 8, 1667 (1996)

    Article  Google Scholar 

  16. R. Palkovits, H. Althues, A. Rumplecker, B. Tesche, A. Dreier, U. Holle, G. Fink, C.H. Cheng, D.F. Shantz, S. Kaskel, Langmuir 21, 6048 (2005)

    Article  Google Scholar 

  17. U. Ozgur, Y.I. Alivov, C. Lui, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  18. D. R. Lide, CRC Handbook of Chemistry and Physics, 76th edn. (CRC Press, Boca Raton, 1995), pp. 4/138

  19. T. Olorunyolemi, A. Birnboim, Y. Carmel, O.C. Wilson, I.K. Lloyd, S. Smith, R. Campbell, J. Am. Ceram. Soc. 85, 1249 (2002)

    Article  Google Scholar 

  20. D.C. Look, Semicond. Sci. Technol. 20, S55 (2005)

    Article  ADS  Google Scholar 

  21. W. Wunderlich, Polymer Handbook, 4th edn., ed. by J. Brandrup, E. H. Immergut, E. A. Grulke (J Wiley & Sons, New York, 1999), pp. V/87

  22. W.G. Zheng, S.C. Wong, H.J. Sue, Polymer 43, 6767 (2002)

    Article  Google Scholar 

  23. M. Agrawal, S. Gupta, N.E. Zafeiropoulos, U. Oertel, R. Habler, M. Stamm, Macromol. Chem. Phys. 211, 1925 (2010)

    Article  Google Scholar 

  24. M.M. Demir, K. Koynov, U. Akbey, C. Bubeck, I. Park, I. Lieberwirth, G. Wegner, Macromolecules 40, 1089 (2007)

    Article  ADS  Google Scholar 

  25. M.M. Demir, M. Memesa, P. Castignollesb, G. Wegner, Macromol. Rapid Commun. 27, 763 (2006)

    Article  Google Scholar 

  26. P. Liu, Z. Su, J. Macromol. Sci. Phys. 45, 131 (2006)

    Article  Google Scholar 

  27. C.H. Hung, W.T. Whang, J. Mater. Chem. 15, 267 (2005)

    Article  Google Scholar 

  28. S.C. Liufu, H.N. Xiao, Y.P. Li, Polym. Degrad. Stab. 87, 103 (2005)

    Article  Google Scholar 

  29. L. D’Orazio, R. Guarino, C. Mancarella, E. Martuscelli, G. Cecchin, J. Appl. Polym. Sci. 66, 2377 (1997)

    Article  Google Scholar 

  30. H.M. Xiong, X. Zhao, J.S. Chen, J. Phys. Chem. B 105, 10169 (2001)

    Article  Google Scholar 

  31. N.R. Yogamalar, R. Srinivasan, A. Chandra Bose, Opt. Mater. 31, 1570 (2009)

    Article  ADS  Google Scholar 

  32. V. Khrenov, M. Klapper, M. Koch, K. Mu¨llen, Macromol. Chem. Phys. 206, 95 (2005)

    Article  Google Scholar 

  33. S.C. Hsu, W.T. Whang, C.H. Hung, P.C. Chiang, Y.N. Hsiao, Macromol. Chem. Phys. 206, 291 (2005)

    Article  Google Scholar 

  34. C. Dong, X. Ni, J. Macromol. Sci. A. 41, 547 (2004)

    Article  Google Scholar 

  35. T. Kashiwagi, A. Inaba, J.E. Brown, K. Hatada, T. Kitayama, E. Masuda, Macromolecules 19, 2160 (1986)

    Article  ADS  Google Scholar 

  36. J.D. Peterson, S. Vyazovkin, C.A. Wight, J. Phys. Chem. B. 103, 8087 (1999)

    Article  Google Scholar 

  37. A. Laachachia, M. Cocheza, M. Ferriola, J.M. Lopez-Cuestab, E. Leroy, Mater. Lett. 59, 36 (2005)

    Article  Google Scholar 

  38. J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Chem. Mater. 13, 4649 (2001)

    Article  Google Scholar 

  39. L. Schadler, Polymer-Based and Polymer-Filled Nanocomposites. Wiley: Nanocomposite Science and Technology, (2003), p. 77–153

  40. D.A. Savin, J. Pyun, G.D. Patterson, T. Kowalewski, J. Polym. Sci. B. Polym. Phys. 40, 2667 (2002)

    Article  ADS  Google Scholar 

  41. A.H. Yuwono, J. Xue, J. Wang, H.I. Elim, W. Ji, Y. Li, T.J. White, J. Mater. Chem. 13, 1475 (2003)

    Article  Google Scholar 

  42. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  43. M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Appl. Surf. Sci. 256, 298 (2009)

    Article  ADS  Google Scholar 

  44. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  45. J. Yguerabide, E.E. Yguerabide, Anal. Biochem. 2, 137 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the China Scholarship Council (CSC), National Natural Science Foundation of China (51033004, 51120135002, 51227801, U1232128), and 973 program of MOST (2010CB934504). The research is also in part supported by China Postdoctoral Science Foundation (Grant No: 2012M521233). The research is also in part supported by “the Fundamental Research Funds for the Central Universities.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majid Khan or Zeming Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Chen, M., Wei, C. et al. Synthesis at the nanoscale of ZnO into poly(methyl methacrylate) and its characterization. Appl. Phys. A 117, 1085–1093 (2014). https://doi.org/10.1007/s00339-014-8554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8554-5

Keywords

Navigation