Skip to main content
Log in

Study on the synthesis and excitation-powerdependent photoluminescence spectrum of ZnSe nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc selenide (ZnSe) nanoparticles with the cubic zinc blende structure were successfully prepared by a solvothermal method without any surface-active agents. The as-obtained sample was characterized by X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, and room-temperature photoluminescence (PL) techniques. It was proved that EDTA played a significant role during the synthesis of ZnSe nanoparticles. The room-temperature PL spectrum of the ZnSe nanoparticles showed a strong near-band-edge emission peak at 472 nm and a weak defect-related emission band in the range of 600–650 nm. Excitation-powerdependent PL spectrum of the ZnSe nanoparticles showed that the near-band-edge emission peak displayed an evident redshift with increasing the excitation power, and the corresponding energy shift might be as large as 51 meV. In addition, the integrated intensity of the near-band-edge emission peak increased with increasing the excitation power, which indicated the competition between the radiative recombination process and the nonradiative recombination process of photogenerated carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.T. Huy, M.H. Seo, P.T. Phong, J.M. Lim, Y. III Lee, Chem. Eng. J. 236, 75 (2014)

    Article  Google Scholar 

  2. D. Colombara, E.V.C. Robert, A. Crossay, A. Taylor, M. Guennou, M. Arasimowicz, J.C.B. Malaquias, R. Djemour, P.J. Dale, Sol. Energy Mater. Sol. Cells 123, 220 (2014)

    Article  Google Scholar 

  3. W. Shi, J. Shi, S. Yu, P. Liu, Appl. Catal. B 138, 184 (2013)

    Article  Google Scholar 

  4. P. Mushonga, I.L.A. Ouma, A.M. Madiehe, M. Meyer, F.B. Dejene, M.O. Onani, Physica B 439, 189 (2014)

    Article  ADS  Google Scholar 

  5. D. Li, Q. Ai, X. Xia, Optik 124, 5177 (2013)

    Article  ADS  Google Scholar 

  6. K. Byrappa, S. Ohara, T. Adschiri, Adv. Drug Deliv. Rev. 60, 299 (2008)

    Article  Google Scholar 

  7. X. Wang, J. Zhu, Y. Zhang, J. Jiang, S. Wei, Appl. Phys. A 99, 651 (2010)

    Article  ADS  Google Scholar 

  8. Z. Chen, D. Wu, J. Lumin. 132, 2968 (2012)

    Article  Google Scholar 

  9. K. Saikia, P. Deb, E. Kalita, Curr. Appl. Phys. 13, 925 (2013)

    Article  ADS  Google Scholar 

  10. G.V. Colibaba, E.P. Goncearenco, D.D. Nedeoglo, N.D. Nedeoglo, Infrared Phys. Technol. 62, 132 (2014)

    Article  ADS  Google Scholar 

  11. S. Saib, N. Bouarissa, P. Rodríguez-Hernández, A. Munoz, Opt. Mater. 35, 2303 (2013)

    Article  ADS  Google Scholar 

  12. D. Wu, Z. Chen, G. Huang, X. Liu, Sensors Actuators A 205, 72 (2014)

    Article  Google Scholar 

  13. D. Shevchenko, J. Mickevičius, N. Starzhinskiy, I. Zenya, A. Zhukov, G. Tamulaitis, Nucl Instrum Methods Phys Res A 749, 14 (2014)

    Article  ADS  Google Scholar 

  14. Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, S. Hark, Adv. Mater. 16, 1436 (2004)

    Article  Google Scholar 

  15. J. Wei, K. Li, J. Chen, J. Zhang, R. Wu, J. Alloys Compd. 531, 86 (2012)

    Article  Google Scholar 

  16. D.J. Kim, K.K. Koo, Cryst. Growth Des. 9, 1153 (2009)

    Article  Google Scholar 

  17. N. Murase, M.Y. Gao, Mater. Lett. 58, 3898 (2004)

    Article  Google Scholar 

  18. S. Xiong, S. Huang, A. Tang, F. Teng, Mater. Lett. 61, 5091 (2007)

    Article  Google Scholar 

  19. S. Jana, I.C. Baek, M.A. Lim, S. Il, Seok. J. Colloid Interface Sci. 322, 473 (2008)

    Article  Google Scholar 

  20. H. Jorkaala, H. Stennenen, J. Opt. A Pure Appl. Opt. 4, 366 (2002)

    Article  ADS  Google Scholar 

  21. F. Cao, W.D. Shi, L.J. Zhao, S.Y. Song, J.H. Yang, Y.Q. Lei, H.J. Zhang, J. Phys. Chem. C 112, 17095 (2008)

    Article  Google Scholar 

  22. X. Wang, L. Li, Y. Lin, J.J. Zhu, Ceram. Int. 39, 5213 (2013)

    Article  Google Scholar 

  23. Y. Yang, Y. Zhang, X. Zhou, X. Wu, S. Xu, H. Wu, S. Guo, Nano Biomed. Eng. 3, 107 (2011)

    Google Scholar 

  24. T. Gao, T.H. Wang, Appl. Phys. A 80, 1451 (2005)

    Article  ADS  Google Scholar 

  25. H. Wang, T. Tian, S. Yan, N. Huang, Z. Xiao, J. Cryst. Growth 311, 3787 (2009)

    Article  ADS  Google Scholar 

  26. F. Wang, Z. Zhang, R. Liu, X. Wang, X. Zhu, A. Pan, B. Zou, Nanotechnology 18, 305705 (2007)

    Article  ADS  Google Scholar 

  27. Z. Hung, A. Ioannidis, M.F. Lawrence, J. Phys. Chem. 97, 952 (1993)

    Article  Google Scholar 

  28. S.Z. Wang, S.F. Yoon, L. He, X.C. Shen, J. Appl. Phys. 90, 2314 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61178074, 61008051, 61378085), Program for the development of Science and Technology of Jilin province (Item No. 201205078, 201215225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Feng or Jinghai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Cao, J., Yang, J. et al. Study on the synthesis and excitation-powerdependent photoluminescence spectrum of ZnSe nanoparticles. Appl. Phys. A 118, 563–568 (2015). https://doi.org/10.1007/s00339-014-8757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8757-9

Keywords

Navigation