Skip to main content
Log in

Thermal treatment synthesis of SnO2 nanoparticles and investigation of its light harvesting application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, nanostructured SnO2 materials have been prepared via thermal treatment method with the aid of new Schiff base complex. N,N′-bis(salicylidene)-1,2-propylenediamine (H2salpn) has been used as Schiff base to prepare a new Schiff base complex. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and TEM. Then, as-prepared SnO2 nanoparticles have been applied as working electrode in dye-sensitized solar cells sensitizing with two different natural dyes: madder and mignonette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110, 25210 (2006)

    Article  Google Scholar 

  2. S.R. Gajjela, K. Ananthanarayanan, C. Yap, M. Grätzel, P. Balaya, Energy Environ. Sci. 3, 838 (2010)

    Article  Google Scholar 

  3. T.W. Hamann, J.W. Ondersma, Energy Environ. Sci. 4, 370 (2011)

    Article  Google Scholar 

  4. Z. Ning, Y. Fu, H. Tian, Energy Environ. Sci. 3, 1170 (2010)

    Article  Google Scholar 

  5. E.N. Kumar, R. Jose, P.S. Archana, C. Vijila, M.M. Yusofand, S. Ramakrishna, Energy Environ. Sci. 5, 5401 (2012)

    Article  Google Scholar 

  6. T. Toupance, O. Babot, B. Jousseaume, G. Vilacqa, Chem. Mater. 15, 4691 (2003)

    Article  Google Scholar 

  7. Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003)

    Article  Google Scholar 

  8. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)

    Article  Google Scholar 

  9. Y. Wang, X. Jiang, Y. Xia, J. Am. Chem. Soc. 125, 16176 (2003)

    Article  Google Scholar 

  10. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107, 659 (2003)

    Article  Google Scholar 

  11. H.J. Ahn, H.C. Choi, K.W. Park, S.B. Kim, Y.E. Sung, J. Phys. Chem. B 108, 9815 (2004)

    Article  Google Scholar 

  12. V. Rajendran, K. Anandan, Mater. Sci. Semicond. Process. 15, 393 (2012)

    Article  Google Scholar 

  13. L.B. Fraigi, D.G. Lamas, N.E. Walsöe de Reca, Mater. Lett. 47, 262 (2001)

    Article  Google Scholar 

  14. Y. Liu, J. Dong, M. Liu, Adv. Mater. 16, 353 (2004)

    Article  Google Scholar 

  15. A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, CrystEngComm 13, 2487 (2011)

    Article  Google Scholar 

  16. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, A. Monfared, F. Mohandes, C. R. Chim. 16, 778 (2013)

    Article  Google Scholar 

  17. M. Salavati-Niasari, B. Shoshtari-Yeganeh, F. Mohandes, Mater. Res. Bull. 48, 1745 (2013)

    Article  Google Scholar 

  18. F.S. Sangsefidi, M. Salavati-Niasari, M. Esmaeili-Zare, J. Ind. Eng. Chem. 20, 3415 (2014)

    Article  Google Scholar 

  19. J.H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Neusch, F. DeAngelis, M. Grätzel, M.K. Nazeeruddin, J. Am. Chem. Soc. 129, 10320 (2007)

    Article  Google Scholar 

  20. S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. DaFre, J. Am. Chem. Soc. 127, 15342 (2005)

    Article  Google Scholar 

  21. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  22. P. Wang, C. Klein, R. Humphry-Baker, S.H. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 127, 808 (2005)

    Article  Google Scholar 

  23. H. Zhou, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A 219, 188 (2011)

    Article  Google Scholar 

  24. M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi, V. Jabbari, Mater. Sci. Semicond. Process. 27, 733 (2014)

    Article  Google Scholar 

  25. S. Sönmezoğlu, C. Akyürek, S. Akin, J. Phys. D Appl. Phys. 45, 425101 (2012)

    Article  Google Scholar 

  26. M.S. Roy, P. Balraju, M. Kumar, G.D. Sharma, Sol. Energy Mater. Sol. Cells 2, 909 (2008)

    Article  Google Scholar 

  27. M. Dadkhah, M. Salavati-Niasari, Electrochim. Acta 129, 62 (2014)

    Article  Google Scholar 

  28. S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Grätzel, Prog. Photovolt. Res. Appl. 15, 603 (2007)

    Article  Google Scholar 

  29. A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 5, 5392 (2012)

    Article  Google Scholar 

  30. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley, New York, 1954)

    MATH  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation (91053846) and University of Kashan for supporting this work by Grant No. (159271/354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadkhah, M., Ansari, F. & Salavati-Niasari, M. Thermal treatment synthesis of SnO2 nanoparticles and investigation of its light harvesting application. Appl. Phys. A 122, 700 (2016). https://doi.org/10.1007/s00339-016-0233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0233-2

Keywords

Navigation