Skip to main content
Log in

Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Y. Ai, X. Shao, P. Jiang, P. Li, Y. Liu, C. Yue, Appl. Phys. A 121, 3 (2015)

    Google Scholar 

  2. J.H. Han, J.P. Ahn, M.C. Shin, J. Mater. Sci. 38, 1 (2003)

    Google Scholar 

  3. H.T. Zhang, J.C. Feng, P. He, H. Hackl, Mater. Charact. 58, 7 (2007)

    Google Scholar 

  4. T. Watanabe, H. Sakuyama, A. Yanagisawa, J. Mater. Process. Technol. 209, 15 (2009)

    Article  Google Scholar 

  5. G.T. Murry, ASM handbook. Properties and selection: nonferrous alloys and special-purpose materials, vol. 2, 10th edn. (ASM International, Ohio, 1993)

    Google Scholar 

  6. W. Thomas, Friction stir butt welding. International Patent Application No.PCT/GB92/0220.1991

  7. P. Staron, M. Koçak, S. Williams, Appl. Phys. A 74, 1 (2002)

    Google Scholar 

  8. T. Ogura, Y. Saito, T. Nishida, H. Nishida, T. Yoshida, N. Omichi et al., Scripta Mater. 66, 8 (2012)

    Article  Google Scholar 

  9. H. Das, S. Basak, G. Das, T.K. Pal, Int. J. Adv. Manuf. Technol. 64, 9 (2013)

    Article  Google Scholar 

  10. M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, W.J. Cheng, C.J. Wang, Mater. Des. 44, 487 (2013)

    Article  Google Scholar 

  11. M. Movahedi, A. Kokabi, S. Reihani, H. Najafi, Sci. Technol. Weld. Join. 17, 2 (2012)

    Google Scholar 

  12. Y. Uematsu, T. Kakiuchi, Y. Tozaki, H. Kojin, Sci. Technol. Weld. Join. 17, 5 (2012)

    Article  Google Scholar 

  13. S. Luisa, G.C. Campanelli, C. Casavola, V. Moramarco, Materials 6, 12 (2013)

    Google Scholar 

  14. N. Able, F. Pfefferkorn, Laser-assisted Friction stir lap welding of aluminum. San Francisco, California, USA. Heat transfer division and electronic and photonic packaging division. (2005) pp. 425–429

  15. G. Kohn, Y. Greenberg, I. Makover, A. Munitz, Weld. J. 81, 2 (2002)

    Google Scholar 

  16. R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, J. Mater. Sci. 50, 12 (2015)

    Google Scholar 

  17. A. Abdollah-Zadeh, T. Saeid, B. Sazgari, J. Alloy. Compd. 460, 1–2 (2008)

    Article  Google Scholar 

  18. K. Ishida, Y. Gao, K. Nagatsuka, M. Takahashi, K. Nakata, J. Alloy. Compd. 630, 5 (2015)

    Article  Google Scholar 

  19. T. Tanaka, T. Morishige, T. Hirata, Scr. Mater. 61, 756 (2009)

    Article  Google Scholar 

  20. B. Li, Y. Shen, L. Luo, H. Weiye, J. Alloys Compd. 658, 904 (2016)

    Article  Google Scholar 

  21. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, J.G. Kerbiguet, Mater. Sci. Eng., A 527, 16 (2010)

    Article  Google Scholar 

  22. M. Haghshenasa, A. Abdel-Gwadb, A.M. Omranb, B. Gokcec, S. Sahraeinejada, A.P. Gerlicha. Mater. Des. 55 (2014)

  23. X. Fei, X. Jin, Y. Ye, T. Xiu, H. Yang, Mater. Sci. Eng. 653, 43 (2016)

    Article  Google Scholar 

  24. W.-S. Chang, S.R. Rajesh, C.-K. Chun, H.-J. Kim, J. Mater. Sci. Technol. 27, 3 (2011)

    Google Scholar 

  25. K.H. Song, T. Tsumura, K. Nakata, Mater. Trans. 50, 7 (2009)

    Google Scholar 

  26. Y.C. Chen, K. Nakata, Metall. Mater. Trans. 39, 8 (2008)

    Article  Google Scholar 

  27. T. Watanabe, H. Takayama, A.J. Yanagisawa, Mater. Process. Technol. 178, 342–349 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Jin, X., Peng, N. et al. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys. Appl. Phys. A 122, 936 (2016). https://doi.org/10.1007/s00339-016-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0462-4

Keywords

Navigation