Skip to main content
Log in

An analysis on structural and magnetic properties of La1−x RE x FeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La1−x RE x FeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) is synthesised by sol–gel citrate combustion method. X-ray diffraction (XRD) and Raman spectra show orthorhombic phase with Pbnm symmetry, confirmed by profile fitting and Raman modes analysis for La1−x R x FeO3 samples. The estimated crystallite size and the orthorhombic strain of La1−x RE x FeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) from XRD data illustrate the role of ionic size substitution. The temperature- and field-dependent magnetisation M(T) and M(H) were measured using vibrating sample magnetometer. The M(H) curve parameters of La1−x RE x FeO3(x = 0.5, RE = Nd and Gd) exhibit a relation of \(M_{\text{r}} \propto \frac{1}{{H_{\text{c}} }}\) and \(H_{\text{ex}} \propto H_{\text{C}}\) at 20, 150 and 300 K. The M (T) curve of La0.5Nd0.5FeO3 and La0.5Gd0.5FeO3 indicates the paramagnetic-like behaviour, whereas the M (H) curve reveals the antiferromagnetic signature in them. The M (H) curve of La0.5Sm0.5FeO3 shows a strong AFM pinned ferromagnetism and ferromagnetism (FM) at 150 and 20 K, respectively. Further, field-cooled (FC) and zero-field-cooled (ZFC) measurement of La0.5Sm0.5FeO3 indicates a competitive interaction of AFM–FM, which is emphasised by a broad blocking temperature at ~117 K in ZFC curve. The FM-like ordering of Sm3+ ions are observed below at ~150 K in FC curve of La0.5Sm0.5FeO3. In addition, the electron paramagnetic resonance spectra at room temperature show a high g value and a strong non-homogenous broadening for La0.5Sm0.5FeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Paul Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I. Panneer Muthuselvam, F.C. Chou, Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. J. Alloys Compd. 646, 924–931 (2015)

    Article  Google Scholar 

  2. M.R. Freeman, B.C. Choi, Advances in magnetic microscopy. Science 294, 1484–1487 (2001)

    Article  ADS  Google Scholar 

  3. R. Akbashev, A.S. Semisalova, N.S. Perov, A.R. Kaul, Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er–Tb). Appl. Phys. Lett. 99, 122502 (2011)

    Article  ADS  Google Scholar 

  4. M. Romeroa, R.W. Gómeza, V. Marquinaa, J.L. Pérez-Mazariegoa, R. Escamillab, Synthesis by molten salt method of the AFeO3 system (A = La, Gd) and its structural, vibrational and internal hyperfine magnetic field characterization. Phys. B 443, 90–94 (2014)

    Article  ADS  Google Scholar 

  5. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64, 415–418 (2010)

    Article  Google Scholar 

  6. S. Chanda, S. Saha, A.S. Alo Dutta, P.K.Chakrabarti Mahapatra, U. Kumar, T.P. Sinha, Multiferroicity in La1/2Nd1/2FeO3 nanoparticles. Solid State Sci. 37, 55–63 (2014)

    Article  ADS  Google Scholar 

  7. S. Chanda, S. Saha, A. Dutta, B. Irfan, R. Chatterjee, T.P. Sinha, Magnetic and dielectric properties of orthoferrites La1−x PrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5). J. Alloys Compd. 649, 1260–1266 (2015)

    Article  Google Scholar 

  8. A. Jaiswal, R. Das, S. Adyanthaya, P. Poddar, Surface effects on morin transition, exchange bias, and enhanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J. Phys. Chem. C 115, 2954–2960 (2011)

    Article  Google Scholar 

  9. Z. Zhou, L. Guo, H. Yang, F.Y. QiangLiu, Hydrothermal synthesis and magnetic properties of multiferroic rare-earthorthoferrites. J. Alloys Compd. 583, 1–31 (2014)

    Article  Google Scholar 

  10. H. Zhao, S. Cao, R. Huang, W. Ren, S. Yuan, B. Kang, L. Bo, J. Zhang, Enhanced 4f-3d interaction by Ti-doping on the magnetic properties of perovskite SmFe1−xTixO3. J. Appl. Phys. 114, 113907 (2013)

    Article  ADS  Google Scholar 

  11. G. Song, J. Jiang, B. Kang, J. Zhang, Z.C.G. Maa, S. Cao, Spin reorientation transition process in single crystal NdFeO3. Solid State Commun. 11, 47–51 (2015)

    Article  ADS  Google Scholar 

  12. S. Yuan, Y. Wang, M. Shao, F. Chang, B. Kang, Y. Isikawa, S. Cao, Magnetic properties of NdFeO3 single crystal in the spin reorientation region. J. Appl. Phys. 109, 07E141 (2011)

    Article  Google Scholar 

  13. A. Paul Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I. Panneer Muthuselvam, F.C. Chou, Structural, magnetic and electrical analysis of La1−xNdxCrO3 (0.00 < x < 0.15): synthesised by sol–gel citrate combustion method. J. Sol–Gel. Sci. Technol. (2016). doi:10.1007/s10971-016-4151-8

    Google Scholar 

  14. Y. Qiu, Y.S. Luo, Z.J. Zou, Z.M. Tian, S.L. Yuan, Y. Xi, L.Z. Huang, Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3. J. Mater. Sci.: Mater. Electron. 25, 760–764 (2014)

    Google Scholar 

  15. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, Exchange bias in LaFeO3 nanoparticles. J. Phys. D Appl. Phys. 43, 245002 (2010)

    Article  ADS  Google Scholar 

  16. T. Fujii, I. Matsusue, D. Nakatsuka, M. Nakanishi, J. Takada, Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Mater. Chem. Phys. 109(3), 805–809 (2011)

    Article  Google Scholar 

  17. A.C. Larson, R.B. Von Dreele, L. Alamos. National Laboratory Report No. LAUR 86–748, (1994)

  18. C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Cryst. 32(4), 838–839 (1999)

    Article  Google Scholar 

  19. L. Chonghe, T. Yihao, Z. Yingzhi, W. Chunmei, W. Ping, Prediction of lattice constant in perovskites of GdFeO3 structure. J. Phys. Chem. Solids 64, 2147–2156 (2003)

    Article  ADS  Google Scholar 

  20. C.A.L. Dixon, C.M. Kavanagh, K.S. Knight, W. Kockelmann, F.D. Morrison, P. Lightfoot, Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3. J. Solid State Chem. 230, 337 (2015)

    Article  ADS  Google Scholar 

  21. D.-Q. Liao, Y. Sun, R.-F. Yang, Z.H. Cheng, Structural, magnetic, and electrical properties of La1−xNdxMn0.8Cr0.2O3 (x < 0.3). Phys. B 394, 104–110 (2007)

    Article  ADS  Google Scholar 

  22. H.C. Gupta, M.K. Singh, L.M. Tiwari, Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc. 33, 67–70 (2002)

    Article  ADS  Google Scholar 

  23. M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigen-modes of antiferromagnetic NdFeO3. J. Raman Spectrosc. 39, 842–848 (2008)

    Article  ADS  Google Scholar 

  24. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)

    Article  ADS  Google Scholar 

  25. W. Anhua, H. Shen, X. Jun, L. Jiang, L. Luo, S. Yuan, S. Cao, H. Zhang, Preparation and magnetic properties of RFeO3nanocrystalline powders. J. Sol–Gel. Sci. Technol. 59, 58–163 (2011)

    Google Scholar 

  26. O.D. Vinila Bedekar, J. Jayakumar, A.K.Tyagi Manjanna, Synthesis and magnetic studies of nano-crystalline GdFeO3. Mater. Lett. 62, 3793–3795 (2008)

    Article  Google Scholar 

  27. K. Matan, B.M. Bartlett, J.S. Helton, V. Sikolenko, S. Matas, K. Prokes, Y. Chen, J.W. Lynn, D. Grohol, T.J. Sato, M. Tokunaga, D.G. Nocera, Y.S. Lee, Dzyaloshinskii–Moriya interaction and spin reorientation transition in the frustrated kagome lattice antiferromagnet. Phys. Rev. B 83, 214406 (2011)

    Article  ADS  Google Scholar 

  28. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Origin of colossal dielectric response in LaFeO3. Acta Mater. 59, 1338–1345 (2011)

    Article  Google Scholar 

  29. M. Sendil Kumar, M. Raja, A.K. Bhatnagar, Surface driven effects on magnetic properties of antiferromagnetic LaFeO3 nanocrystalline ferrite. J. Appl. Phys. 116, 113912 (2014)

    Article  ADS  Google Scholar 

  30. R.N. Bhowmik, N. Naresh, B. Ghosh, S. Banerjee, Study of low temperature ferromagnetism, surface paramagnetism and exchange bias effect in α-Fe1.4Ga0.6O3 oxide. Curr. Appl. Phy. 14, 970 (2014)

    Article  ADS  Google Scholar 

  31. A. McDannald, L. Kuna, M.S. Seehra, M. Jain, Magnetic exchange interactions of rare-earth-substituted DyCrO3 bulk powders. Phys. Rev. B. 91, 224415 (2015)

    Article  ADS  Google Scholar 

  32. S. Phokha, S. Pinitsoontorn, S. Rujirawat, S. Maensiri, Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Phys. B 476, 55 (2015)

    Article  ADS  Google Scholar 

  33. S.A. Makhlouf, H. Al-Attar, R.H. Kodama, Particle size and temperature dependence of exchange bias in NiO nanoparticles. Solid State Commun. 145, 1–4 (2008)

    Article  ADS  Google Scholar 

  34. X.G. Liu, X.H. Liu, Q. Zhang, D.Y. Geng, Z. Han, W. Liu, Z.D. Zhang, Exchange bias in CrN/Co nanocomposites consisting of CrN-coated Co nanocapsules and CrN nanoparticles. J. Alloys Compd. 486, 14–17 (2009)

    Article  ADS  Google Scholar 

  35. N.M. Carneiro, W.C. Nunes, R.P. Borges, M. Godinho, L.E. Fernandez-Outon, Waldemar A.A. Macedo, I.O. Mazali, NiO nanoparticles dispersed in mesoporous silica glass. J. Phys. Chem. C 114, 18773–18778 (2010)

    Article  Google Scholar 

  36. X. Kun, S. Yuan, Yu. Qianying, B. Kang, J. Zhang, Exchange bias and glassy behaviours at high magnetic field in low doped La1−xSrxCoO3. J. Phys: Conf. Ser. 150, 042231 (2009)

    Google Scholar 

  37. F. Zhang, S. Li, J. Song, J. Shi, X. Sun, Magnetic characterization and low-temperature heat transport properties of the orthoferrites RFeO3 (R = rare earth) single crystals. IEEE Trans. Magn. (2015). doi:10.1109/TMAG.2015.2445916

    Google Scholar 

  38. P.S. Anil Kumar, P.A. Joy, S.K. Date, Origin of the cluster-glass-like magnetic properties of the ferromagnetic system La0.5Sr0.5CoO3. J. Phys.: Condens. Matter 10, 487–493 (1998)

    Google Scholar 

  39. R. Topkaya, Ö. Akman, S. Kazan, B. Aktas, Z. Durmus, A. Baykal, Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles. J. Nanopart. Res. 14, 1156 (2012)

    Article  Google Scholar 

  40. S. Lei, L. Liu, C. Wang, X. Shen, D. Guo, C. Wang, S. Zeng, B. Cheng, Y. Xiao, L. Zhoua, The ferromagnetic–antiferromagnetic properties of Ni–Cr2O3 composite hollow spheres prepared by an in situ reduction method. CrystEngComm 16, 1322–1333 (2014)

    Article  Google Scholar 

  41. B. Wang, X. Zhao, W. Anhua, S. Cao, X. Jun, A.M. Kalashnikova, R.V. Pisarev, Single crystal growth and magnetic properties of Sm0.7Tb0.3FeO3orthoferrite single crystal. J. Magn. Magn. Mater. 379, 192–195 (2015)

    Article  ADS  Google Scholar 

  42. R.C. Sherwood, L.G. Van Uitert, R. Wolfe, R.C. Lecraw, Variation of the reorientation temperature and magnetic Crystal anisotropy of the rare-earth orthoferrites. Phys. Lett. 25(4), 297 (1967)

    Article  Google Scholar 

  43. S. Huang, L.R. Shi, Z.M. Tian, H.G. Sun, S.L. Yuan, Zero-field cooled exchange bias effect in LaxSm1−xCrO3 (x = 0.0–0.9) ceramics. J. Magn. Magn. Mater. 394, 77–81 (2015)

    Article  ADS  Google Scholar 

  44. G.G. Artemev, A.M. Kadomtseva, V.N. Milov, M.M. Lukina, A.A. Mukhin, New mechanism of the spin-reorientation phase transition in neodymium orthochromite. J. Magn. Magn. Mater. 140–144, 2157–2158 (1995)

    Article  Google Scholar 

  45. H. Guo, X. Wei, M.-H. Cui, N.-L. Yang, D.L. Akins, Microwave absorption by nanostructural ferric oxide encapsulated within MCM-41. Chem. Commun. 12, 1432–1433 (2003)

    Article  Google Scholar 

  46. X. Li, H. Zhang, M. Zhao, EPR spectra of nanocrystalline composite oxide LaFeO3 with the perovskite structure. Mater. Chem. Phys. 38, 157–161 (1994)

    Article  Google Scholar 

  47. P.C. Sati, M. Kumar, S. Chhoker, Low temperature ferromagnetic ordering and dielectric properties of Bi1−xDyxFeO3 ceramics. Ceram. Int. 41, 3227–3236 (2015)

    Article  Google Scholar 

  48. S. Zhang, S. Tan, L. Pi, Y. Zhang, Strong correlation effects and new phase transition at high pressure–low temperature in La0.5Ba0.5FeO3. J. Magn. Magn. Mater. 322, 3381–3384 (2010)

    Article  ADS  Google Scholar 

  49. P.C. Sati, M. Kumar, S. Chhoker, M. Jewariy, Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram. Int. 41, 2389–2398 (2015)

    Article  Google Scholar 

  50. I. Veinger, A.G. Zabrodskii, T.V. Tisnek, E.N. Mokhov, Specific features of electron spin resonance in 4H-SiCin the vicinity of the insulator-metal phase transition:II. Analysis of the width and shape of lines. Semiconductors 38, 782–787 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Murugaraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul Blessington Selvadurai, A., Pazhanivelu, V., Jagadeeshwaran, C. et al. An analysis on structural and magnetic properties of La1−x RE x FeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A 123, 13 (2017). https://doi.org/10.1007/s00339-016-0651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0651-1

Keywords

Navigation