Skip to main content
Log in

Scattering effect of the well-ordered MgB4 impurity phase in two-step sintered polycrystalline MgB2 with glycine addition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glycine-doped MgB2 bulk was prepared by two-step sintering in this study, first at 750 °C and then 900 °C. The MgB4 particles are induced to precipitate where the dislocations concentrated after C substitution or along the steps of screw dislocation during crystal growth, forming ordered MgB4 arrays throughout the MgB2 grain. By means of atomic force microscope, the detected magnetic domains are arranged in agreement with the ordered MgB4 particles after the measurement of magnetic hysteresis loop, which supported that the nano-scale MgB4 domain structure brought strong scattering effects and indicated that atomic force microscopy could test the role of the impurities. As a result, the extrapolating upper critical field H c2(0 K) is enhanced to 22.8 T for the sample with ordered MgB4, while only 18.1 T for the un-doped sample underwent the same sintering program. Besides, carbon substitution contributed to the enhancement of H c2 as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  ADS  Google Scholar 

  3. Q. Cai, Y. Liu, Z. Ma, L. Yu, Appl. Phys. A 114, 919–924 (2014)

    Article  ADS  Google Scholar 

  4. S.X. Dou, O. Shcherbakova, W.K. Yeoh, J.H. Kim, S. Soltanian, X.L. Wang, C. Senatore, R. Fukiger, M. Dhalle, O. Husnjak, E. Babic, Phys. Rev. Lett. 98, 097002 (2007)

    Article  ADS  Google Scholar 

  5. W. K. Yeoh, J. Horvat, S. X. Dou, V. Keast, Supercond. Sci. Technol. 17, S572–S577 (2004)

    Article  ADS  Google Scholar 

  6. K.S.B. De Silva, X. Xu, S. Gambir, D.C.K. Wong, W.X. Li, Q.Y. Hu, IEEE Trans. Appl. Supercond. 23, 7100604 (2013)

    Article  Google Scholar 

  7. S. J. Ye, A. Matsumoto, Y. C. Zhang, H. Kumakura, Supercond. Sci. Technol. 27, 085012 (2014)

    Article  ADS  Google Scholar 

  8. S.X. Dou, V. Braccini, S. Soltanian, R. Klie, Y. Zhu, S. Li, X.L. Wang, D. Larbalestier, J. Appl. Phys. 96, 7549–7555 (2004)

    Article  ADS  Google Scholar 

  9. E. Taylan Koparan, B. Savaskan, S. B. Guner, S. Celik, Appl. Phys. A 122, 46 (2016)

    Article  ADS  Google Scholar 

  10. A.M. Awasthi, S. Bhardwaj, V.P.S. Awana, A. Figini Albisetti, G. Giunchi, A.V. Narlikar, Appl. Phys. Lett. 103, 112601 (2013)

    Article  ADS  Google Scholar 

  11. Q. Cai, Z. Ma, Y. Liu, L. Yu, Mater, Chem. Phys. 136, 778–782 (2012)

    Google Scholar 

  12. Q. Cai, Y. Liu, Z. Ma, H. Li, L. Yu, Appl. Phys. Lett. 103, 132601 (2013)

    Article  ADS  Google Scholar 

  13. T. Higuchi, S.I. Yoo, M. Murakami, Phys. Rev. B 59, 1514–1527 (1999)

    Article  ADS  Google Scholar 

  14. I. Shigeta, T. Abiru, K. Abe, A. Nishida, Y. Matsumoto, Physica C 392, 359–363 (2003)

    Article  ADS  Google Scholar 

  15. Z.X. Shi, Y.X. Zhang, H. Lv, M. Xu, E.M. Choi, S.I. Lee, Physica C 467, 101–105 (2007)

    Article  ADS  Google Scholar 

  16. E. Martinez, P. Mikheenko, M. Martinez-lopez, A. Millan, A. Bevan, J.S. Abell, Phys. Rev. B 75, 134515 (2007)

    Article  ADS  Google Scholar 

  17. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  Google Scholar 

  18. K.H.P. Kim, C.U. Jung, B.W. Kang, K.H. Kim, H.–S. Lee, S.–I. Lee, N. Tamura, W.A. Caldwell, J.R. Patel, Curr. Appl. Phys. 4, 272–275 (2004)

    Article  Google Scholar 

  19. M. Avdeev, J.D. Jorgensen, R.A. Ribeiro, S.L. Bud’ko, P.C. Canfield, Physica C 387, 301–306 (2003)

    Article  ADS  Google Scholar 

  20. J.D. Jorgensen, D.G. Hinks, S. Short, Phys. Rev. B 63, 224522 (2001)

    Article  ADS  Google Scholar 

  21. M. R. Ahmadi, E. Povoden-Karadeniz, K. I. Öksüz, A. Falahati, E. Kozeschnik, Comp. Mater. Sci. 91, 173–186 (2014)

    Article  Google Scholar 

  22. B. Gautier, J.-R. Duclere, M. Guilloux-Viry, Appl. Surf. Sci. 217, 108–117 (2003)

    Article  ADS  Google Scholar 

  23. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii, K. Kishio, Appl. Phys. Lett. 86, 212502 (2005)

    Article  ADS  Google Scholar 

  24. A. Gurevich, Phys. Rev. B 67, 184515 (2003)

    Article  ADS  Google Scholar 

  25. H. Yamada, M. Hirakawa, H. Kumakura, and H. Kitaguchi, Supercond. Sci. Technol. 19, 175–177 (2006)

    Article  ADS  Google Scholar 

  26. M.W. Coffey, J.R. Clem, Phys. Rev. B 45, 9872–9988 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the National Natural Science Foundation of China (Granted Nos. 51474156 and U1660201), the National High Technology Research and Development Program of China (Granted No. 2015AA042504) for Grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Liu, Y., Guo, Q. et al. Scattering effect of the well-ordered MgB4 impurity phase in two-step sintered polycrystalline MgB2 with glycine addition. Appl. Phys. A 123, 229 (2017). https://doi.org/10.1007/s00339-017-0855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0855-z

Keywords

Navigation