Skip to main content
Log in

Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Rev. Sens. Actuators B. 54, 3–15 (1999)

    Article  Google Scholar 

  2. C.-W. Chen, C.-H. Lin, H.-P. Chiang, Y.-C. Liu, P.T. Leung, W.S. Tse, Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor. Appl. Phys. A. 89, 377–380 (2007)

    Article  ADS  Google Scholar 

  3. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, R. Rao, Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis. Appl. Phys. A. 89, 407–411 (2007)

    Article  ADS  Google Scholar 

  4. P. Paul Beland, Berini, Viability assessment of bacteria using long-range surface plasmon waveguide biosensors. Appl. Phys. A. 123, 31 (2017)

    Article  ADS  Google Scholar 

  5. M. Farre, L. Kantiani, D. Barcelo, Advances in immunochemical technologies for analysis of organic pollutants in the environment. Trac Trends Anal. Chem. 26, 1100–1112 (2007)

    Article  Google Scholar 

  6. W.P. Chen, J.M. Chen, Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J. Opt. Soc. Am. 71, 189–191 (1981)

    Article  ADS  Google Scholar 

  7. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  8. X. Yu, D. Wang, Z. Yan, Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sen. Actuators B Phys. 91, 285–290 (2003)

    Article  Google Scholar 

  9. N.-F. Chiu, Y.-C. Tu, T.-Y. Huang, Enhanced sensitivity of anti-symmetrically structured surface plasmon resonance sensors with zinc oxide intermediate layers. Sensors. 14, 170–187 (2014)

    Article  Google Scholar 

  10. G.B. McGaughey, M. Gagne, A.K. Rappe, π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998)

    Article  Google Scholar 

  11. J. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small. 6, 1205–1209 (2010)

    Article  Google Scholar 

  12. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express. 18, 14395–14400 (2010)

    Article  ADS  Google Scholar 

  13. J.C. Charlier, P.C. Eklund, J. Zhu, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes, in Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, 2008)

    Google Scholar 

  14. Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Yu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)

    Article  ADS  Google Scholar 

  15. D.W. Horsell, P.J. Hale, A.K. Savchenko, Mechanical manipulation and measurement of graphene by atomic force microscopy. Microsc. Anal. 25, 9–11 (2011)

    Google Scholar 

  16. Electrons Can Travel Over 100 Times Faster In Graphene Than In Silicon, Physicists Show (ScienceDaily, 2008), http://www.sciencedaily.com/releases/2008/03/080324094514.htm. Accessed 25 Mar 2008

  17. B. Song, D. Li, W.P. Qi, M. Elstner, C.H. Fan, H.P. Fang, Graphene on Au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem. Phy. Chem. 1, 585–589 (2010)

  18. S. Patskovsky, S. Bah, M. Meunier, A.V. Kabashin, Characterization of high refractive index semiconductor films by surface plasmon resonance. Appl. Opt. 45, 6640–6645 (2006)

    Article  ADS  Google Scholar 

  19. S. Franzen, Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 34, 2867–2869 (2009)

    Article  ADS  Google Scholar 

  20. W.M. Kima, S.H. Kim, K.-S. Lee, T.S. Lee, I.H. Kim, Titanium nitride thin film as an adhesion layer for surface Plasmon resonance sensor chips. Appl. Sur. Sci. 261, 749–752 (2012)

    Article  ADS  Google Scholar 

  21. P.H. Holloway, Gold/chromium metallization for electronic devices. Gold Bull. 12, 99–106 (1979)

    Article  Google Scholar 

  22. H. Neff, W. Zong, A.M.N. Lima, M. Borre, G. Holzhuter, Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films. 496, 688–697 (2006)

    Article  ADS  Google Scholar 

  23. U. Ozgur, C. Liu, A. Alivov, M.A. Teke, S. Reshchikoh, V. Dogan, S.J. Avrutin, H. Cho, Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41–301 (2005)

    Article  Google Scholar 

  24. A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small. 2, 944–961 (2006)

    Article  Google Scholar 

  25. J. Wang, X. Sun, A. Wei, Y. Lei, X. Cai, C. Li, Z. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106–233109 (2006)

    Article  ADS  Google Scholar 

  26. S.A. Kumar, S.-M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal. Lett. 41, 141–158 (2008)

    Article  Google Scholar 

  27. H. Liao, W. Wen, G.K. Wong, G. Yang, Optical nonlinearity of nanocrystalline Au/ZnO composite films. Opt. Lett. 28, 1790–1792 (2003)

    Article  ADS  Google Scholar 

  28. L. Wang, J. Wang, S. Zhang, Y. Sun, X. Zhu, Y. Cao, X. Wang, H. Zhang, D. Song, Surface plasmon resonance biosensor based on water-soluble ZnO–Au nanocomposites. Anal. Chim. Acta. 653, 109–115 (2009)

    Article  Google Scholar 

  29. K. Ozga, T. Kawaharamura, A. Umar, M. Ali, K. Oyama, A. Nouneh, S. Slezak, M. Fujita, A.H. Piasecki, I.V. Reshak, Kityk, Second-order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films. Nanotechnology. 19, 185–709 (2008)

    Article  Google Scholar 

  30. B.H. Ong, X. Yuan, S.C. Tjin, J. Zhang, H. Ng, Min, Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sen Actuators B Chem. 114, 1028–1034 (2006)

    Article  Google Scholar 

  31. L. Xia, S. Yin, H. Gao, Q. Deng, C. Du, Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration. Plasmonics. 6, 245–250 (2011)

    Article  Google Scholar 

  32. S.W. Kowalczyk, M.W. Tuijtel, S.P. Donkers, C. Dekker, Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett. 10, 1414–1420 (2010)

    Article  ADS  Google Scholar 

  33. R. Triranjita Srivastava, R. Jha, Das, High-performance bimetallic SPR sensor based on periodic-multilayer-waveguides. IEEE Photon. Tech. Lett. 23, 1448–1450 (2011)

    Article  ADS  Google Scholar 

  34. S.H. Choi, K.M. Byun, Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection. Opt. Soc. Am. A. 27, 2229–2236 (2010)

    Article  ADS  Google Scholar 

  35. A.I. Stognij, N.N. Novitskii, S.D. Tushina, S.V. Kolinnikov, Preparation of ultrathin gold film by oxygen-ion sputtering and their optical properties. Tech. Phys. 48, 745–748 (2003)

    Article  Google Scholar 

  36. M. Bruna, S. Borini, Optical constants of graphene layers in visible range. Appl. Phys. Lett. 94, 031901–031903 (2009)

    Article  ADS  Google Scholar 

  37. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science. 320, 1308–1314 (2008)

    Article  ADS  Google Scholar 

  38. B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor. Sens. Actuators B. 107, 40–46 (2005)

    Article  Google Scholar 

  39. Z.-Y. Li, L.-L. Lin, Photonic band structure solved by a plane-wave-based transfer-matrix method. Phys. Rev. E. 67, 046607 (2003)

    Article  ADS  Google Scholar 

  40. P. Yeh, Optical waves in layered media (Wiley, Singapore, 1991)

    Google Scholar 

  41. Y.-H. Ye, G. Bader, V.-V. Truong, Low-loss one-dimensional metallodielectric photonic crystals fabricated by metallic insertions in a multilayer dielectric structure. Appl. Phys. Lett. 77, 235–237 (2000)

    Article  ADS  Google Scholar 

  42. R. Verma, B.D. Gupta, R. Jha, Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B. 160, 623–631 (2011)

    Article  Google Scholar 

  43. P.K. Maharana, R. Jha, Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators B Chem. 169, 161–166 (2012)

    Article  Google Scholar 

  44. P.K. Maharana, T. Srivastava, R. Jha, Ultrasensitive plasmonic imaging sensor based on graphene and silicon. IEEE Photonics Tech. Lett. 25, 122–125 (2013)

    Article  ADS  Google Scholar 

  45. P.K. Maharana, R. Jha, S. Palei, Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 190, 494–501 (2014)

    Article  Google Scholar 

  46. P.K. Maharana, R. Jha, P. Padhy, On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sens. Actuators B. 207, 117–122 (2015)

    Article  Google Scholar 

  47. P.K. Maharana, P. Padhy, R. Jha, On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene. IEEE Photonics Tech. Lett. 25, 2156–2159 (2013)

    Article  ADS  Google Scholar 

  48. P.K. Maharana, T. Srivastava, R. Jha, On the performance of highly sensitive and accurate graphene-on-aluminium and silicon-based SPR biosensor for visible and near infrared. Plasmonics. 9, 1113–1120 (2014)

    Article  Google Scholar 

  49. P.K. Maharana, T. Srivastava, R. Jha, Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements. J. Phys. D Appl. Phys. 47, 385102 (2014)

    Article  ADS  Google Scholar 

  50. J.K. Nayak, P.K. Maharana, R. Jha, Dielectric over-layer assisted graphene, its oxide and MoS2-based fibre optic sensor with high field enhancement. J. Phys. D Appl. Phys. 50, 405112 (2017)

    Article  Google Scholar 

  51. J.K. Nayak, R. Jha, Numerical simulation on the performance analysis of a graphene-coated optical fibre plasmonic sensor at anti-crossing. Appl. Opt. 56, 3510–3517 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grant Commission (UGC) New Delhi and CSIR New Delhi, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kushwaha, A.S., Srivastava, M. et al. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl. Phys. A 124, 235 (2018). https://doi.org/10.1007/s00339-018-1606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1606-5

Navigation