Skip to main content

Advertisement

Log in

Fabrication of microphase-separated polyurethane/cellulose nanocrystal nanocomposites with irregular mechanical and shape memory properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low molecular weight poly(ethylene glycol) (PEG)-based polyurethane (PU)/cellulose nanocrystal (CNC) nanocomposites were prepared using in situ polymerization and pre-polymer approach. PEG was used as soft segment, and 1,4-butanediol (BDO) as chain extender and hexamethylene diisocyanate (HDI) were used as hard segment. Also, effect of CNC loading on different properties of the resulting nanocomposites such as microstructure, thermal properties, and microphase separation of soft and hard segments was investigated. Mechanical properties and shape memory behaviors were determined by tensile and shape memory tests, respectively. Due to low molecular weight of soft segment, the net effect of hydrogen bonding on different properties of nanocomposites is well investigated here. Results showed that introduction of CNCs into PU matrix influenced the hydrogen bonding between different moieties of structure, which resulted in different microphase separation states. Also, CNCs had no significant effect on thermophysical and thermal properties. However, tensile strength, elongation at break, and modulus as mechanical properties were affected significantly. Nanocomposites containing up to 0.5 wt.% of CNC had improved modulus, tensile strength, and elongation at break compared to neat PU, whereas higher amounts of CNC resulted in lower modulus, tensile strength, and elongation at break. Shape memory behaviors were evaluated using tensile test. Nanocomposites showed shape memory behavior up to 0.5 wt.% of CNCs, and at higher CNCs loading, no shape memory behavior was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Behnam, H. Roghani-Mamaqani, M. Salami-Kalajahi, Incorporation of silica nanoparticles and polyurethane into hybrid composites for increase of char residue. J. Therm. Anal. Calorim. 135, 3311–3319 (2019)

    Google Scholar 

  2. B.Q.Y. Chan, S.S. Liow, X.J. Loh, Organic-inorganic shape memory thermoplastic polyurethane based on polycaprolactone and polydimethylsiloxane. RSC Adv. 6, 34946–34954 (2016)

    Google Scholar 

  3. R. Behnam, H. Roghani-Mamaqani, M. Salami-Kalajahi, Preparation of carbon nanotube and polyurethane-imide hybrid composites by sol-gel reaction. Polym. Compos. 40, E1903–E1909 (2019)

    Google Scholar 

  4. G. Zheng, M. Lu, X. Rui, The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane. Appl. Surf. Sci. 399, 272–281 (2017)

    ADS  Google Scholar 

  5. Z. Wu, H. Wang, X. Tian, P. Cui, X. Ding, X. Ye, The effects of polydimethylsiloxane on transparent and hydrophobic waterborne polyurethane coatings containing polydimethylsiloxane. Phys. Chem. Chem. Phys. 16, 6787–6794 (2014)

    Google Scholar 

  6. H. Nemati, H. Roghani-Mamaqani, M. Salami-Kalajahi, Preparation of polyurethane-acrylate and silica nanoparticle hybrid composites by a free radical network formation method. Bull. Mater. Sci. 42, 219 (2019)

    Google Scholar 

  7. F. Joki-Korpela, T.T. Pakkanen, Incorporation of polydimethylsiloxane into polyurethanes and characterization of copolymers. Eur. Polym. J. 47, 1694–1708 (2011)

    Google Scholar 

  8. M.M. Rahman, A. Hasneen, H.-D. Kim, W.K. Lee, Preparation and properties of polydimethylsiloxane (PDMS)/polytetramethyleneadipate glycol (PTAd)-based waterborne polyurethane adhesives: effect of pdms molecular weight and content. J. Appl. Polym. Sci. 125, 88–96 (2012)

    Google Scholar 

  9. M.M. Rahman, H.D.J. Kim, Characterization of waterborne polyurethane adhesives containing different soft segments. J. Adhesion Sci. Technol. 21, 81–96 (2007)

    Google Scholar 

  10. P. Khadivi, M. Salami-Kalajahi, H. Roghani-Mamaqani, Evaluation of in vitro cytotoxicity and properties of polydimethylsiloxane-based polyurethane/crystalline nanocellulose bionanocomposites. J. Biomed. Mater. Res. A 107, 1771–1778 (2019)

    Google Scholar 

  11. A. Pei, J.-M. Malho, J. Ruokolainen, Q. Zhou, L.A. Berglund, Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44, 4422–4427 (2011)

    ADS  Google Scholar 

  12. R.L.M. Sofla, M. Rezaei, A. Babaie, M. Nasiri, Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties. Compos. Part B-Eng. 175, 107090 (2019)

    Google Scholar 

  13. M.V. Pergal, J. Nestorov, G. Tovilovic, S. Ostojic, D. Godevac, D. Vasiljevic-Radovic, J. Djonlagic, Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility. J. Biomed. Mater. Res. A 102, 3951–3964 (2014)

    Google Scholar 

  14. R.L.M. Sofla, M. Rezaei, A. Babaie, Investigation of the effect of graphene oxide functionalization on the physical, mechanical and shape memory properties of polyurethane/reduced graphene oxide nanocomposites. Diamond Relat. Mater. 95, 195–205 (2019)

    ADS  Google Scholar 

  15. A. Babaie, M. Rezaei, R.L.M. Sofla, Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites. J. Mech. Behav. Biomed. Mater. 96, 53–68 (2019)

    Google Scholar 

  16. G. Pompe, A. Pohlers, P. Pötschke, J. Pionteck, Influence of processing conditions on the multiphase structure of segmented polyurethane. Polymer 39, 5147–5153 (1998)

    Google Scholar 

  17. J.R. Lin, L.W. Chen, Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content. J. Appl. Polym. Sci. 69, 1563–1574 (1998)

    Google Scholar 

  18. D.J. Martin, L.A. Poole Warren, P.A. Gunatillake, S.J. McCarthy, G.F. Meijs, K. Schindhelm, Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability. Biomaterials 21, 1021–1029 (2000)

    Google Scholar 

  19. Y.H. Lee, E.J. Kim, H.D. Kim, Synthesis and properties of waterborne poly(urethane urea)s containing polydimethylsiloxane. J. Appl. Polym. Sci. 120, 212–219 (2011)

    Google Scholar 

  20. K. Karl, G. Werner, Shape memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)

    Google Scholar 

  21. M.L. Auad, M.A. Mosiewicki, T. Richardson, M.I. Aranguren, N.E. Marcovich, Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J. Appl. Polym. Sci. 115, 1215–1225 (2010)

    Google Scholar 

  22. F. Li, X. Zhang, J. Hou, M. Xu, X. Luo, D. Ma, B.K. Kim, Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 64, 1511–1516 (1997)

    Google Scholar 

  23. Y. Liu, K. Gall, M.L. Dunn, P. Mccluskey, Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater. Struct. 12, 947–954 (2003)

    ADS  Google Scholar 

  24. A. Lendlein, A.M. Schmidt, R. Langer, AB-polymer networks based on oligo(Ɛ-caprolactone) segments showing shape-memory properties. Proc. Natl. Acad. Sci. U. S. A. 98, 842–847 (2001)

    ADS  Google Scholar 

  25. K. Gall, M.L. Dunn, Y. Liu, D. Finch, M. Lake, N.A. Munshi, Shape memory polymer nanocomposites. Acta Mater. 50, 5115–5126 (2002)

    Google Scholar 

  26. M.O. Seydibeyoglu, K. Oksman, Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos. Sci. Technol. 68, 908–914 (2008)

    Google Scholar 

  27. Q.J. Wu, M. Henriksson, X. Liu, L.A. Berglund, A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromol 8, 3687–3692 (2007)

    Google Scholar 

  28. S.-A. Safavi-Mirmahalleh, M. Salami-Kalajahi, H. Roghani-Mamaqani, Effect of surface chemistry and content of nanocrystalline cellulose on removal of methylene blue from wastewater by poly(acrylic acid)/nanocrystalline cellulose nanocomposite hydrogels. Cellulose 26, 5603–5619 (2019)

    Google Scholar 

  29. M.L. Auad, V.S. Contos, S. Nutt, M.I. Aranguren, N.E. Marcovich, Characterization of nanocellulose reinforced shape memory Polyurethanes. Polym. Int. 57, 651–659 (2008)

    Google Scholar 

  30. J.F. Vincent, From cellulose to cell. J. Exp. Biol. 202, 3263–3268 (1999)

    Google Scholar 

  31. A.A. Septevani, D.A.C. Evans, P.K. Annamalai, D.J. Martin, The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Ind. Crops Prod. 107, 114–121 (2017)

    Google Scholar 

  32. G. Mondragon, A. Santamaria-Echart, M.E.V. Hormaiztegui, A. Arbelaiz, C. Pena-Rodriguez, V. Mucci, M. Corcuera, M.I. Aranguren, A. Eceiza, Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres. J. Polym. Environ. 26, 1869–1880 (2018)

    Google Scholar 

  33. H.U. Ko, H.C. Kim, J.W. Kim, L. Zhai, T. Jayaramudu, J. Kim, Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane. Smart Mater. Struct. 26, 085012 (2017)

    ADS  Google Scholar 

  34. M. Haqani, H. Roghani-Mamaqani, M. Salami-Kalajahi, Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose 24, 2241–2254 (2017)

    Google Scholar 

  35. M. Haghayegh, G.M.M. Sadeghi, B. Shamayeli, Synthesis of shape memory polyurethane/nanoclay composites: chemical structure and interactions between polymer and nanoclay particles, Iran. J. Polym Sci. Technol. 25, 19–30 (2012)

    Google Scholar 

  36. Z. Abousalman-Rezvani, P. Eskandari, H. Roghani-Mamaqani, M. Salami-Kalajahi, Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydr. Polym. 225, 115247 (2019)

    Google Scholar 

  37. L. Noein, V. Haddadi-Asl, M. Salami-Kalajahi, Grafting of pH-sensitive poly (N, N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization for controllable drug release. Int. J. Polym. Mater. Polym. Biomater. 66, 123–131 (2017)

    Google Scholar 

  38. Z. Abousalman-Rezvani, P. Eskandari, H. Roghani-Mamaqani, H. Mardani, M. Salami-Kalajahi, Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions. Polymer 182, 121830 (2019)

    Google Scholar 

  39. H. Zhang, J. Zhang, S. Song, G. Wu, J. Pu, Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6, 4430–4438 (2011)

    Google Scholar 

  40. C. Prisacariu, Polyurethane Elastomers (Springer, Berlin, 2011)

    Google Scholar 

  41. P. Panahian, M. Salami-Kalajahi, M.S. Hosseini, Synthesis of dual thermoresponsive and pH-sensitive hollow nanospheres by atom transfer radical polymerization. J. Polym. Res. 21, 455 (2014)

    Google Scholar 

  42. V. Kupka, Q. Zhou, F. Ansari, H. Tang, M. Slouf, L. Vojtova, L.A. Berglund, J. Janccar, Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk. Polym. Compos. 40, E456–E465 (2019)

    Google Scholar 

  43. I.M. Pereira, R.L. Orefice, Study of the morphology exhibited by linear segmented polyurethanes. Macromol. Symp. 299, 190–198 (2011)

    Google Scholar 

  44. V.W. Srichatrapimuk, S.L. Cooper, Infrared thermal analysis of polyurethane block polymers. Macromol. Sci. 15, 267–311 (1978)

    Google Scholar 

  45. N. Ren, Y. Song, C. Tao, B. Cong, Q. Cheng, Y. Huang, G. Xu, J. Bao, Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries. J. Solid State Electrochem. 22, 1109–1121 (2017)

    Google Scholar 

  46. D. Pedrazzoli, I. Manas-Zloczower, Understanding phase separation and morphology in thermoplastic polyurethanes nanocomposites. Polymer 90, 256–263 (2016)

    Google Scholar 

  47. N. Akram, K.M. Zia, M. Saeed, A. Mansha, W.G. Khan, Morphological studies of polyurethane based pressure sensitive adhesives by tapping mode atomic force microscopy. J. Polym. Res. 25, 194 (2018)

    Google Scholar 

  48. M. Song, H.S. Xia, K.J. Yao, D.J. Hourston, A study on phase morphology and surface properties of polyurethane/organoclay nanocomposites. Eur. Polym. J. 41, 259–266 (2005)

    Google Scholar 

  49. M. Golshan, M. Salami-Kalajahi, H. Roghani-Mamaqani, M. Mohammadi, Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polymer 117, 287–294 (2017)

    Google Scholar 

  50. A. Pirayesh, M. Salami-Kalajahi, H. Roghani-Mamaqani, E. Dehghani, Investigation of thermophysical and adhesion/mechanical properties of amine-cured epoxidized polysulfide polymer/epoxidized graphene nanocomposites. Prog. Org. Coat. 131, 211–218 (2019)

    Google Scholar 

  51. S. Moqadam, M. Salami-Kalajahi, M. Mahdavian, Synthesis and characterization of sunflower oil-based polysulfide polymer/cloisite 30B nanocomposites, Iran. J. Chem. Chem. Eng. 37, 185–192 (2018)

    Google Scholar 

  52. R. Cha, Z. He, Y. Ni, Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr. Polym. 88, 713–718 (2012)

    Google Scholar 

  53. A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, M.S.U. Rahman, M.I. Bashir, M. Asghar, M.A. Ali, T. Mahmood, Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: a sustained drug release study. React. Funct. Polym. 119, 57–63 (2017)

    Google Scholar 

  54. A. Abbasi, G.M.M. Sadeghi, I. Ghasemi, M. Shahrousvand, Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: synthesis, properties, and cell behavior. Polym. Compos. 39, 4020–4033 (2018)

    Google Scholar 

  55. F.K. Molavi, I. Ghasemi, M. Messori, M. Esfandeh, Nanocomposites based on poly(L-lactide)/poly(ε-caprolactone) blends with triple-shape memory behavior: effect of the incorporation of graphene nanoplatelets (GNps). Compos. Sci. Technol. 151, 219–227 (2017)

    Google Scholar 

  56. A. Saralegi, M.L. Gonzalez, A. Valea, A. Eceiza, M.A. Corcuera, The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos. Sci. Technol. 92, 27–33 (2014)

    Google Scholar 

  57. M.S. Kim, J.K. Jun, H.M. Jeong, Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos. Sci. Technol. 68, 1919–1926 (2008)

    Google Scholar 

  58. A.E. Kalajahi, M. Rezaei, F. Abbasi, G.M.M. Sadeghi, The effect of chain extender type on the physical, mechanical and shape memory properties of poly (ε-caprolactone)-based polyurethane-ureas. Polym.-Plast. Technol. Eng. 56, 1977–1985 (2017)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Salami-Kalajahi or Hossein Roghani-Mamaqani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadivi, P., Salami-Kalajahi, M., Roghani-Mamaqani, H. et al. Fabrication of microphase-separated polyurethane/cellulose nanocrystal nanocomposites with irregular mechanical and shape memory properties. Appl. Phys. A 125, 779 (2019). https://doi.org/10.1007/s00339-019-3082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3082-y

Navigation