Skip to main content
Log in

The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this theoretical study, the zinc borate glasses have been modified with lanthanum oxide (La2O3) in a different amount (0, 1, 2, 3 and 4%).The mechanical and shielding properties change after adding of lanthanum oxide in zinc borate glasses depending on the bond compression and Makishima-Mackenzie models. The mass attenuation coefficients have been calculated using the XCOM program and MCNPX simulation code. The results present that La2O3 increment in the glass density modifies the glass mechanical properties and improves the radiation attenuation performances. The variations in the mechanical properties are resulting from the formation of bridging oxygen. The density of the ZnO–B2O3–La2O3 glass system is proportional to La2O3 concentration, which is attributable to the highest molecular weight of La2O3 than those of ZnO and B2O3. Furthermore, the mass attenuation coefficients, effective atomic numbers and effective removal cross-section of the glasses increases as La2O3 contains increase. The half-value layer, tenth value layer, mean free path, buildup factors and mass stopping power of the glasses decrease as La2O3 contain increases. Present results explained the characteristic of ZnO–B2O3–La2O3 glass as a novel nominee for radiation attenuation barrier in the chosen energy zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. H.O. Tekin, M.I. Sayyed, A.M. Shams, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. 150, 95–100 (2018). https://doi.org/10.1016/j.radphyschem.2018.05.002

    Article  ADS  Google Scholar 

  2. M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 11, 40–45 (2018). https://doi.org/10.1016/j.rinp.2018.08.029

    Article  ADS  Google Scholar 

  3. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. (2015). https://doi.org/10.1016/j.nucengdes.2014.12.033

    Article  Google Scholar 

  4. D.D. Ramteke, K. Annapurna, V.K. Deshpande, R.S. Gedam, Effect of Nd3+ on spectroscopic properties of lithium borate glasses. J. Rare Earths 32, 1148–1153 (2014). https://doi.org/10.1016/S1002-0721(14)60196-4

    Article  Google Scholar 

  5. A. Pan, A. Ghosh, Structural and optical properties of lithium bismuthate glasses. J. Mater. Res. 17, 1941–1944 (2002). https://doi.org/10.1557/JMR.2002.0287

    Article  ADS  Google Scholar 

  6. B.H. Venkataraman, K.B.R. Varma, Structural and optical properties of (100–x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) glasses and glass nanocrystal composites. Opt. Mater. (Amst) 28, 1423–1431 (2006). https://doi.org/10.1016/j.optmat.2005.08.013

    Article  ADS  Google Scholar 

  7. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Relaxation and fluctuations in glassy fast-ion conductors: wide-frequency-range NMR and conductivity measurements. Phys. Rev. B. 46, 795–800 (1992). https://doi.org/10.1103/PhysRevB.46.795

    Article  ADS  Google Scholar 

  8. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta 444, 173–178 (2006). https://doi.org/10.1016/j.tca.2006.03.016

    Article  Google Scholar 

  9. H. Zheng, J.D. Mackenzie, Bi4Sr3Ca3Cu4O16 glass and superconducting glass ceramics. Phys. Rev. B. 38, 7166–7168 (1988). https://doi.org/10.1103/PhysRevB.38.7166

    Article  ADS  Google Scholar 

  10. I.N. Chakraborty, J.E. Shelby, R.A. Condrate, Properties and structure of lanthanum borate glasses. J. Am. Ceram. Soc. 67, 782–785 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19700.x

    Article  Google Scholar 

  11. I.N. Chakraborty, D.E. Day, Effect of R3+ ions on the structure and properties of lanthanum borate glasses. J. Am. Ceram. Soc. 68, 641–645 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb10117.x

    Article  Google Scholar 

  12. J.W.M. Verwey, G.F. Imbusch, G. Blasse, Laser excited spectroscopy of Gd3+ ions in crystalline and glass borate hosts with comparable composition. J. Phys. Chem. Solids 50, 813–820 (1989). https://doi.org/10.1016/0022-3697(89)90061-9

    Article  ADS  Google Scholar 

  13. K. Terashima, S. Tamura, S.-H. Kim, T. Yoko, Structure and nonlinear optical properties of lanthanide borate glasses. J. Am. Ceram. Soc. 80, 2903–2909 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03210.x

    Article  Google Scholar 

  14. A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. 136, 27–31 (2018). https://doi.org/10.1016/j.apradiso.2018.02.004

    Article  Google Scholar 

  15. A. Mesbahi, A.-A. Azarpeyvand, A. Shirazi, Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Ann. Nucl. Energy 38, 2752–2756 (2011). https://doi.org/10.1016/j.anucene.2011.08.023

    Article  Google Scholar 

  16. O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram Int (2019). https://doi.org/10.1016/j.ceramint.2019.09.095

    Article  Google Scholar 

  17. H.O. Tekin, L.R.P. Kassab, S.A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.204

    Article  Google Scholar 

  18. S.A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO-(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  ADS  Google Scholar 

  19. S.A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99 − x)B2O3–Sm2O3 glass system. Ceram. Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  Google Scholar 

  20. H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO 3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125 (2017)

    Article  Google Scholar 

  21. E. Kavaz, H.O. Tekin, N.Y. Yorgun, Ö.F. Özdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study. Radiat. Phys. Chem. 162, 187–193 (2019). https://doi.org/10.1016/j.radphyschem.2019.05.019

    Article  ADS  Google Scholar 

  22. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO–Al2O3–SiO2–B2O3 and Na2O–Al2O3–SiO2 glass systems. J. Non. Cryst. Solids. 518, 92–102 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.012

    Article  ADS  Google Scholar 

  23. O. Kilicoglu, E.E. Altunsoy, O. Agar, M. Kamislioglu, M.I. Sayyed, H.O. Tekin, N. Tarhan, Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results Phys. 14, 102424 (2019). https://doi.org/10.1016/j.rinp.2019.102424

    Article  Google Scholar 

  24. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation. Ceram. Int. 45, 19206–19222 (2019). https://doi.org/10.1016/j.ceramint.2019.06.168

    Article  Google Scholar 

  25. H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Tech. 28, 95 (2017). https://doi.org/10.1007/s41365-017-0253-4

    Article  Google Scholar 

  26. H.O. Tekin, MCNP-X monte carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 Inch NaI(Tl) detector and comparison with xcom and monte carlo data. Sci. Technol. Nucl. Install. (2016). https://doi.org/10.1155/2016/6547318

    Article  Google Scholar 

  27. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018). https://doi.org/10.1007/s00339-018-2069-4

    Article  ADS  Google Scholar 

  28. L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001). https://doi.org/10.1016/s0969-806x(00)00324-8

    Article  ADS  Google Scholar 

  29. H.O. Tekin, Shams A.M. Issa, E. Kavaz, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express 6, 115212 (2019). https://doi.org/10.1088/2053-1591/ab4cb5

    Article  Google Scholar 

  30. M.A.N. Society, ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering, Illinois, 1990

  31. S. Kaur, A. Kaur, P.S. Singh, T. Singh, Scope of Pb-Sn binary alloys as gamma rays shielding material. Prog. Nucl. Energy 93, 277–286 (2016). https://doi.org/10.1016/j.pnucene.2016.08.022

    Article  Google Scholar 

  32. N. Ekinci, E. Kavaz, B. Aygün, U. Perişanoğlu, Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defects Solids 174, 435–451 (2019). https://doi.org/10.1080/10420150.2019.1596110

    Article  ADS  Google Scholar 

  33. H.C. Manjunatha, L. Seenappa, C. Sridhar, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 139, 187–194 (2018). https://doi.org/10.1016/j.apradiso.2018.05.014

    Article  Google Scholar 

  34. A.B. Chilton, J.K. Shultis, R.E. Faw, Principles of radiation shielding prentice hall (Englewood Cliffs, New Jersey, 1984)

    Google Scholar 

  35. M.F. Kaplan, Concrete radiation shielding (Wiley, New York, 1989)

    Google Scholar 

  36. E. Kavaz, H.O. Tekin, O. Agar, E.E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M.M. Abuzaid, M.I. Sayyed, The Mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 45, 15348–15357 (2019). https://doi.org/10.1016/j.ceramint.2019.05.028

    Article  Google Scholar 

  37. M. Şekerci, H. Özdoğan, A. Kaplan, Charged particle penetration distance and mass stopping power calculations on some nuclear reactor control rod materials. Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg. (2019). https://doi.org/10.18185/erzifbed.562185

    Article  Google Scholar 

  38. A. Akar, H. Gümüş, N.T. Okumuşoğlu, Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies. Appl. Radiat. Isot. 64, 543–550 (2006). https://doi.org/10.1016/j.apradiso.2005.11.014

    Article  Google Scholar 

  39. S.M. Seltzer, M.J. Berger, Procedure for calculating the radiation stopping power for electrons. Int. J. Appl. Radiat. Isot. 33, 1219–1226 (1982). https://doi.org/10.1016/0020-708X(82)90245-9

    Article  Google Scholar 

  40. N. Tsoulfanidis, Measurement and detection of radiation (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  41. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010), Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268 (2010) 1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

  42. https://physics.nist.gov/PhysRefData/Star/Text/method.html, (n.d.)

  43. B. Bridge, N.D. Patel, D.N. Waters, On the elastic constants and structure of the pure inorganic oxide glasses. Phys. Status Solidi. 77, 655–668 (1983). https://doi.org/10.1002/pssa.2210770231

    Article  ADS  Google Scholar 

  44. Y.B. Saddeek, Structural analysis of alkali borate glasses. Phys. B Condens. Matter. 344, 163–175 (2004). https://doi.org/10.1016/j.physb.2003.09.254

    Article  ADS  Google Scholar 

  45. J. Wood, Computational methods in reactor shielding (Pergamon Press Inc., New York, 1982)

    Google Scholar 

  46. S.A.M. Issa, M.I. Sayyed, M. Kurudirek, Study of gamma radiation shielding properties of ZnO–TeO2 glasses. Bull. Mater. Sci. 40, 841–857 (2017). https://doi.org/10.1007/s12034-017-1425-x

    Article  Google Scholar 

  47. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3–SiO2 (EDFA) for the signal protection from nuclear radiation. J. Alloys Compd. 698, 234–240 (2017). https://doi.org/10.1016/j.jallcom.2016.12.176

    Article  Google Scholar 

  48. A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Met. 215, 200–206 (2016). https://doi.org/10.1016/j.synthmet.2016.03.002

    Article  Google Scholar 

  49. S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Compos. Part B Eng. 167, 231–240 (2019). https://doi.org/10.1016/j.compositesb.2018.12.029

    Article  Google Scholar 

  50. Y.B. Saddeek, K. Aly, G. Abbady, N. Afify, K.S. Shaaban, A. Dahshan, Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y 2 O 3). J. Non. Cryst. Solids. 454, 13–18 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.10.023

    Article  ADS  Google Scholar 

  51. H. Doweidar, G. El-Damrawi, M. Al-Zaibani, Distribution of species in Na2O–CaO–B2O3 glasses as probed by FTIR. Vib. Spectrosc. 68, 91–95 (2013). https://doi.org/10.1016/j.vibspec.2013.05.015

    Article  Google Scholar 

  52. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non. Cryst. Solids. 355, 348–354 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.12.008

    Article  ADS  Google Scholar 

  53. H. Doweidar, Y.B. Saddeek, Effect of La2O3 on the structure of lead borate glasses. J. Non. Cryst. Solids. 356, 1452–1457 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.036

    Article  ADS  Google Scholar 

  54. D.R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (CRC Press, Boca Raton, 1995)

    Google Scholar 

  55. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A.M. Ali, M.A. Sayed, The effect of TiO2 on the optical and mechanical properties of heavy metal oxide borosilicate glasses. Silicon. (2018). https://doi.org/10.1007/s12633-018-9912-2

    Article  Google Scholar 

  56. Y.B. Saddeek, A.M. Abousehly, S.I. Hussien, Synthesis and several features of the Na2O–B2O3-Bi2O3–MoO3 glasses. J. Phys. D Appl. Phys. 40, 4674–4681 (2007). https://doi.org/10.1088/0022-3727/40/15/048

    Article  ADS  Google Scholar 

  57. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non. Cryst. Solids. 12, 35–45 (1973). https://doi.org/10.1016/0022-3093(73)90053-7

    Article  ADS  Google Scholar 

  58. J. Rocherulle, C. Ecolivet, M. Poulain, P. Verdier, Y. Laurent, Elastic moduli of oxynitride glasses. Extension of Makishima and Mackenzie’s theory. J. Non. Cryst. Solids. 108, 187–193 (1989). https://doi.org/10.1016/0022-3093(89)90582-6

    Article  ADS  Google Scholar 

  59. A.M. Shams, H.O. Issa, Y.B. Tekin, M.I. Saddeek, M.A. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3–MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Results Phys. 13, 102165 (2019). https://doi.org/10.1016/j.rinp.2019.102165

    Article  Google Scholar 

  60. S. Inaba, S. Oda, K. Morinaga, Heat capacity of oxide glasses at high temperature region. J. Non. Cryst. Solids. 325, 258–266 (2003). https://doi.org/10.1016/S0022-3093(03)00315-6

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors extended their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research group program under grant number R.G.P.2/33/40. The authors extended their appreciation to Ms. Michelle Griffin from U.K. for her contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, S.A.M., Susoy, G., Ali, A.M. et al. The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties. Appl. Phys. A 125, 867 (2019). https://doi.org/10.1007/s00339-019-3169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3169-5

Navigation