Skip to main content
Log in

Infrared thermal source or perfect absorber sensor based on silver 2D grating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We design and numerically investigate the spectral properties of two kinds of 2D Ag structured surfaces. The first structure is composed of Ag achieving a maximum absorption of 90% with the optimal structured parameters. The insertion of a metal layer between the grating layer and the substrate improved not only the absorption (greater than 95%) but also the sensor performance. Numerical computation is conducted to obtain the spectral distribution of powers with different structural parameters using the rigorous coupled-wave analysis method. Thus, we have demonstrated that any considered silver structure behaves either as a thermal source or a plasmonic sensor in the infrared range. The degree of directivity of each thermal source studied depends on several geometric and optical parameters. The best directivity is characterized by a narrow band of the full width at half maximum equal to 10.46 mrad with a nearly perfect absorption. Then, the performance of this source is identified by a quality factor (Q) equal to 176.52. The proposed structure as a perfect absorber sensor gives a maximum sensitivity of \(4000\; \text{nm/RIU}\), a maximum absorption of \(100 \%\) (demonstrated by strong fields distribution), and a maximum value of figure of merit equal to \(52.71 \;\text{RIU}^{-1}\) for analyte refractive index ranging from 1.33 to 1.4. The proposed structures have great potential as biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Inoue, M. De Zoysa, T. Asano, S. Noda, Optica 2, 27–35 (2015). https://doi.org/10.1364/OPTICA.2.000027

    Article  ADS  Google Scholar 

  2. C. Zhang, K. Wu, V. Giannini, X. Li, ACS Nano (2017). https://doi.org/10.1021/acsnano.6b07578

    Article  Google Scholar 

  3. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. (2012). https://doi.org/10.1021/nl204512x

    Article  Google Scholar 

  4. Wu Dong, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, H. Ye, Nanoscale Res. Lett. (2016). https://doi.org/10.1364/ACPC.2016.AS3E.5

    Article  Google Scholar 

  5. A.A. Rifat, G. Amouzad Mahdiraji, R. Ahmed, D.M. Chow, Y.M. Sua, Y.G. Shee, F.R. Mahamd Adikan, IEEE Photon. J. (2015). https://doi.org/10.1109/JPHOT.2015.2510632

    Article  Google Scholar 

  6. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, M. Qiu, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4881267

    Article  Google Scholar 

  7. H. Liang, J. Lai, Z. Zhou, J. Opt. A (2009). https://doi.org/10.1088/1464-4258/11/10/105001

    Article  Google Scholar 

  8. Q. Yuriu, L. Qiang, G. Hanmo, D. Kaikai, B. Songang, Z. Ding, Y. Hui, Q. Min, Adv. Opt. Mater. (2016). https://doi.org/10.1002/adom.201500651

    Article  Google Scholar 

  9. Z. Li, S. Butun, K. Aydin, ACS Nano (2014). https://doi.org/10.1021/nn502617t

    Article  Google Scholar 

  10. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, M. Qiu, Opt. Lett. (2014). https://doi.org/10.1364/OL.39.001137

    Article  Google Scholar 

  11. S. Luo, J. Zhao, D. Zuo, X. Wang, Opt. Express (2016). https://doi.org/10.1364/oe.24.009288

    Article  Google Scholar 

  12. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, Nat. Photon. (2012). https://doi.org/10.1038/nphoton.2012.146

    Article  Google Scholar 

  13. T. Inoue, T. Asano, M. De Zoysa, A. Oskooi, S. Noda, JOSA B (2013). https://doi.org/10.1364/JOSAB.30.000165

    Article  Google Scholar 

  14. S. Noda, K. Fujiwara, T. Nakayama, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4807174

    Article  Google Scholar 

  15. M.A. Noginov, A. Mozafari, T.U. Tumkur, J.K. Kitur, E.E. Narimanov, Opt. Mater. Express (2015). https://doi.org/10.1364/OME.5.001511

    Article  Google Scholar 

  16. R. Carminati, J.-J. Greffet, Phys. Rev. Lett. (1999). https://doi.org/10.1103/PhysRevLett.82.1660

    Article  Google Scholar 

  17. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, Phys. Rev. (2004). https://doi.org/10.1103/PhysRevB.69.155412

    Article  Google Scholar 

  18. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, Optics Commun. 168(1–4), 117–122 (1999). https://doi.org/10.1016/S0030-4018(99)00328-4.

    Article  ADS  Google Scholar 

  19. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, Opt. Lett. (2005). https://doi.org/10.1364/OL.30.002623

    Article  Google Scholar 

  20. H. Sai, H. Yugami, Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1807031

    Article  Google Scholar 

  21. J.-J. Greffet, R. Carminati, K. Joulain, J-Ph. Mulet, S. Mainguy, (2002) https://www.ncbi.nlm.nih.gov/pubmed/11882890.

  22. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, E. Hasman, J Heat Transf. (2008). https://doi.org/10.1115/1.2955475

    Article  Google Scholar 

  23. M.U. Pralle, N. Moelders, M.P. McNeal, I. Puscasu, A.C. Greenwald, J.T. Daly, E.A. Johnson, Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1526919

    Article  Google Scholar 

  24. K. Ikeda, H.T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, S. Kitagawa, Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2834903

    Article  Google Scholar 

  25. G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2883948

    Article  Google Scholar 

  26. M. Zhang, J. Fang, F. Zhang, J. Chen, H. Yu, Opt. Commun. (2017). https://doi.org/10.1016/j.optcom.2017.07.007

    Article  Google Scholar 

  27. J. He, P. Ding, J. Wang, C. Fan, E. Liang, Opt. Express (2015). https://doi.org/10.1364/OE.23.006083

    Article  Google Scholar 

  28. G. Xia, C. Zhou, S. Jin, C. Huang, X. Jinyu, J. Xing, Z. Liu, Sensors (2019). https://doi.org/10.3390/s19051198

    Article  Google Scholar 

  29. A.M. Ahmed, M. Shaban, Appl. Phys. (2020). https://doi.org/10.1007/s00340-020-7405-7

    Article  Google Scholar 

  30. A.K. Sharma, A.K. Pandey, Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.05.006

    Article  Google Scholar 

  31. M.F. Azman, G.A. Mahdiraji, W. Ru Wong, R.A. Aoni, F.R. Mahamd Adikan, Appl. Opt. (2019). https://doi.org/10.1364/AO.58.002068

    Article  Google Scholar 

  32. M. Rojy Momota, M.D. Rabiul Hasan, Opt. Mater. (2018). https://doi.org/10.1016/j.optmat.2017.12.049

    Article  Google Scholar 

  33. A.A. Rifat, G.A. Mahdiraji, R. Ahmed, D.M. Chow, Y.M. Sua, Y.G. Shee, F.R. Mahamd Adikan, IEEE Photon. J. (2016). https://doi.org/10.1109/JPHOT.2015.2510632

    Article  Google Scholar 

  34. J. Lu, Y.A.N. Li, Y. Han, Y. Liu, J. Gao, Appl. Opt. (2018). https://doi.org/10.1364/AO.57.005268

    Article  Google Scholar 

  35. L. Kuang-Li, T. Po-Cheng, Y. Meng-Lin, P. Ming-Yang, S. Xu, U. Kosei, H. Misawa, W. Pei-Kuen, ACS Omega (2017). https://doi.org/10.1021/acsomega.7b01349

    Article  Google Scholar 

  36. M. Hernáez, I. Del Villar, C.R. Zamarreño, F.J. Arregui, I.R. Matias, Appl. Opt. (2010). https://doi.org/10.1364/AO.49.003980

    Article  Google Scholar 

  37. M. Hernaez, C.R. Zamarreño, I. Del Villar, I.R. Matias, F.J. Arregui, Proced. Eng. (2010). https://doi.org/10.1016/j.proeng.2010.09.302

    Article  Google Scholar 

  38. P. Sanchez, C.R. Zamarreno, M. Hernaez, Sensors Actuators B (2014). https://doi.org/10.1016/j.snb.2014.05.065

    Article  Google Scholar 

  39. P. Zubiate, C.R. Zamarreño, I. Del Villar, I.R. Matias, F.J. Arregui, Exp Opt. (2015). https://doi.org/10.1364/oe.23.008045

    Article  Google Scholar 

  40. I. Del Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, J. Lightwave Technol. (2010). https://doi.org/10.1109/JLT.2009.2036580

    Article  Google Scholar 

  41. B. Zhao, L. Wang, Y. Shuai, Z.M. Zhang, Int. J. Heat Mass Transf. (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047

    Article  Google Scholar 

  42. S He, Y Liu, H Chen, K Qiu, S Fu (2010) Design of multilayer grating in VUV spectrum by rigorous coupled-wave method. Proc. SPIE 7655, 5th international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies, 76551O (6 October 2010). https://doi.org/10.1117/12.866135

  43. M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, JOSA (1995). https://doi.org/10.1364/JOSAA.12.001068

    Article  Google Scholar 

  44. C. P. Logofătu, Proc. SPIE 5972, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies II, 59720Q (14 December 2005). https://doi.org/10.1117/12.639735. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5972.toc

  45. L. Lifeng, J. Optic. Soc. Am. A 14(10), 2758–2767 (1997). https://doi.org/10.1364/JOSAA.14.002758

    Article  ADS  Google Scholar 

  46. L. Lifeng, (2003) https://doi.org/10.1088/1464-4258/5/4/307

  47. Z.M. Zhang, Nano/microscale heat transfer (McGraw-Hill, New York, 2007). https://doi.org/10.1007/978-3-030-45039-7

    Book  MATH  Google Scholar 

  48. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Appl. Opt. (1998). https://doi.org/10.1364/AO.37.005271

    Article  Google Scholar 

  49. A.A. Rifat, G. Mahdiraji, Y.M. Sua, R. Ahmed, Y. Shee, F.M. Adikan, Opt. Exp. (2016). https://doi.org/10.1364/OE.24.002485

    Article  Google Scholar 

  50. J. De Torres, P. Ghenuche, E. Grinenval, M. Brennan, G. Baffou, H. Rigneault, J. Wenger, Photoniques (2013). https://doi.org/10.1051/photon/20136537

    Article  Google Scholar 

  51. E. Ferrari, M. Soloviev, (2020) Nanoparticles in biology and medicine: methods and protocols, methods in molecular biology. (Humana, New York, NY); pp. 351–382.

  52. L. Wang, Z.M. Zhang, JOSA (2013). https://doi.org/10.1364/JOSAB.27.002595

    Article  Google Scholar 

  53. L.P. Wang, Z.M. Zhang, J. Heat Transf. (2013). https://doi.org/10.1115/1.4024469

    Article  Google Scholar 

  54. O. Krasnykov, A. Karabchevsky, A. Shalabney, M. Auslender, I. Abdulhalim, Opt. Commun. (2011). https://doi.org/10.1016/j.optcom.2010.10.076

    Article  Google Scholar 

  55. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. (2010). https://doi.org/10.1021/nl9041033

    Article  Google Scholar 

  56. J.N. Dash, R. Jha, IEEE Photon. Technol. Lett. (2014). https://doi.org/10.1109/LPT.2014.2301153

    Article  Google Scholar 

  57. R.G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R.A.F.R. Adikan, Sensors (2015). https://doi.org/10.3390/s150511499

    Article  Google Scholar 

  58. M. Rahmani, D.Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T.Y.F. Liew, M. Hong, S.A. Maier, Nano Lett. (2012). https://doi.org/10.1021/nl3003683

    Article  Google Scholar 

  59. S.-Y. Chen et al., J. Vac. Sci. Technol. B (2011). https://doi.org/10.1116/1.3613697

    Article  Google Scholar 

  60. A. Dhibi, M. Khemiri, M. Oumezzine, Phys. E (2016). https://doi.org/10.1016/j.physe.2015.12.027

    Article  Google Scholar 

  61. S. Ye et al., Adv. Opt. Mater. (2014). https://doi.org/10.1002/adom.201400208

    Article  Google Scholar 

  62. L. Wang, Z.M. Zhang, JOSA (2010). https://doi.org/10.1364/JOSAB.27.002595

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pavel Kwiecien for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Sassi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, I., Mghaieth, R. Infrared thermal source or perfect absorber sensor based on silver 2D grating. Appl. Phys. A 126, 675 (2020). https://doi.org/10.1007/s00339-020-03854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03854-2

Keywords

Navigation