Skip to main content
Log in

Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple synthesis of carbon quantum dots (CQDs) from green sources has attracted increasing attention nowadays. Here we report the synthesis of water-soluble fluorescent carbon quantum dots from mandarin juice by hydrothermal method. When excited at 364 nm, CQDs give maximum fluorescence at 462 nm. As verified from Transmission Electron Microscopy, obtained CQDs were very small, with an average diameter of 2.37 ± 0.42 nm. These very small-sized nanoparticles were dispersed to nematic liquid crystal mixture E7. As is known, particle size is a significant parameter for nanoparticle dispersed liquid crystal applications. The threshold voltage of pure and CQDs doped liquid crystals was derived from dielectric spectroscopy measurements, and it was observed that the threshold voltage increased with the increasing CQDs doping concentration. The nematic to the isotropic phase transition temperature of samples was investigated with DSC thermograms and POM. The phase transition temperatures gradually decreasing with increasing CQDs doping concentration were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.V. Nimmy, S.C. Karumuthil, S. Varghese, Liq. Cryst. 47, 36 (2019)

    Google Scholar 

  2. J. Prakash, S. Khan, S. Chauhan, A.M. Biradar, J. Mol. Liq. 297, 112052 (2020)

    Google Scholar 

  3. H. Eskalen, M. Okumuş, Ş. Özgan, Optik (Stuttg). 187, 223 (2019)

    ADS  Google Scholar 

  4. P. Khushboo, P. Sharma, P. Malik, K.K. Raina, Phase Trans. 89, 144 (2016)

    Google Scholar 

  5. G. Singh, M.R. Fisch, S. Kumar, Liq. Cryst. 44, 444 (2017)

    Google Scholar 

  6. H. Eskalen, Ş. Özgan, Ü. Alver, S. Kerli, Acta Phys. Pol. A 127, 756 (2015)

    ADS  Google Scholar 

  7. M. Tejaswi, P. Pardhasaradhi, B.T.P. Madhav, M.C. Rao, N. Krishna Mohan, R.K.N.R. Manepalli, Liq. Cryst. 47, 918 (2020)

    Google Scholar 

  8. H. Karabuğa, H.H. Mert, G. Karanlık, H. Ocak, ChemistrySelect 4, 8983 (2019)

    Google Scholar 

  9. R. Manda, S. Pagidi, Y.J. Lim, R. He, S.M. Song, J.H. Lee, G.-D. Lee, S.H. Lee, J. Mol. Liq. 291, 111314 (2019)

    Google Scholar 

  10. D.P. Tripathi, P. Pardhasaradhi, B.T.P. Madhav, R.K.N.R. Manepalli, U.R. Jena, Liq. Cryst. (2020). https://doi.org/10.1080/02678292.2019.1710779

    Article  Google Scholar 

  11. P. Jayaprada, P. Pardhasaradhi, B.T.P. Madhav, G. Giridhar, M.C. Rao, R.K.N.R. Manepalli, V.G.K.M. Pisipati, Mol. Cryst. Liq. Cryst. 689, 10 (2019)

    Google Scholar 

  12. J. Sivasri, P. Pardhasaradhi, B.T.P. Madhav, M. Tejaswi, R.K.N.R. Manepalli, Liq. Cryst. 47, 330 (2020)

    Google Scholar 

  13. R.K.N.R. Manepalli, G. Giridhar, P. Pardhasaradhi, P. Jayaprada, M. Tejaswi, K. Sivaram, C.M. Kumar, V.G.K.M. Pisipati, Mater. Today Proc. 5, 2666 (2018)

    Google Scholar 

  14. A. Sharma, P. Kumar, P. Malik, Liq. Cryst. (2020). https://doi.org/10.1080/02678292.2020.1755467

    Article  Google Scholar 

  15. R. Katiyar, K. Agrahari, G. Pathak, T. Vimal, G. Yadav, K.K. Pandey, A.K. Misra, A. Srivastava, R. Manohar, J. Theor. Appl. Phys. 14, 237 (2020)

    ADS  Google Scholar 

  16. S. Yadav, P. Malik, Khushboo, D. Jayoti, Liq. Cryst. 47, 984 (2020)

    Google Scholar 

  17. G. Kaur, P. Kumar, A.K. Singh, D. Jayoti, P. Malik, Liq. Cryst. 1, 15 (2020)

    Google Scholar 

  18. V. Sharma, P. Kumar, P. Malik, K.K. Raina, J. Appl. Polym. Sci. 137, 48745 (2020)

    Google Scholar 

  19. M. Okumuş, H. Eskalen, M. Sünkür, Ş. Özgan, J. Mol. Struct. 1178, 428 (2019)

    ADS  Google Scholar 

  20. M. Okumuş, J. Mol. Liq. 266, 529 (2018)

    Google Scholar 

  21. M. Okumuş, Ş. Özgan, Liq. Cryst. 41, 1293 (2014)

    Google Scholar 

  22. L. Sathya, P. Subhasri, T. Vasanthi, V.N. Vijayakumar, R. Jayaprakasam, L. Chandra, Russ. J. Phys. Chem. A 93, 2414 (2019)

    Google Scholar 

  23. S. Sundaram, P. Subhasri, R. Jayaprakasam, V.N. Vijayakumar, Can. J. Phys. 98, 413 (2020)

    ADS  Google Scholar 

  24. A.L. Rodarte, Z.S. Nuno, B.H. Cao, R.J. Pandolfi, M.T. Quint, S. Ghosh, J.E. Hein, L.S. Hirst, ChemPhysChem 15, 1413 (2014)

    Google Scholar 

  25. A. Roy, K. Agrahari, A. Srivastava, R. Manohar, Liq. Cryst. 46, 1224 (2019)

    Google Scholar 

  26. J. Mirzaei, M. Reznikov, T. Hegmann, J. Mater. Chem. 22, 22350 (2012)

    Google Scholar 

  27. S. Doke, E. Martinez-Teran, A.A. El-Gendy, P. Ganguly, S. Mahamuni, J. Mol. Liq. 288, 110836 (2019)

    Google Scholar 

  28. H. Eskalen, Ş. Özgan, S. Kerli, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Google Scholar 

  29. A. Roy, G. Pathak, J. Herman, S.R. Inamdar, A. Srivastava, R. Manohar, Appl. Phys. A 124, 273 (2018)

    ADS  Google Scholar 

  30. G. Kocakülah, O. Köysal, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Google Scholar 

  31. K.P. Praseetha, M.C. Divyasree, V.N. John, K. Chandrasekharan, S. Varghese, J. Mol. Liq. 273, 497 (2019)

    Google Scholar 

  32. T. Zhang, C. Zhong, J. Xu, Jpn. J. Appl. Phys. 48, 55002 (2009)

    ADS  Google Scholar 

  33. U.B. Singh, R. Dhar, A.S. Pandey, S. Kumar, R. Dabrowski, M.B. Pandey, AIP Adv. 4, 117112 (2014)

    ADS  Google Scholar 

  34. M. Bugakov, N. Boiko, P. Samokhvalov, X. Zhu, M. Möller, V. Shibaev, J. Mater. Chem. C 7, 4326 (2019)

    Google Scholar 

  35. Z. Wang, M. Cao, G. Shao, Z. Zhang, H. Yu, Y. Chen, Y. Zhang, Y. Li, B. Xu, Y. Wang, J. Yao, J. Phys. Chem. Lett. 11, 767 (2020)

    Google Scholar 

  36. S.J. Park, J.Y. Park, J.W. Chung, H.K. Yang, B.K. Moon, S.S. Yi, Chem. Eng. J. 383, 123200 (2020)

    Google Scholar 

  37. S. Li, J. Liu, Z. Chen, Y. Lu, S.S. Low, L. Zhu, C. Cheng, Y. He, Q. Chen, B. Su, Q. Liu, Sens. Actuators B Chem. 297, 126811 (2019)

    Google Scholar 

  38. B. van Dam, H. Nie, B. Ju, E. Marino, J.M.J. Paulusse, P. Schall, M. Li, K. Dohnalová, Small 13, 1 (2017)

    Google Scholar 

  39. R. Aggarwal, D. Saini, B. Singh, J. Kaushik, A.K. Garg, S.K. Sonkar, Sol. Energy 197, 326 (2020)

    ADS  Google Scholar 

  40. S. Anwar, H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M. Yan, Q. Wang, H. Bi, A.C.S. Appl, Bio Mater. 2, 2317 (2019)

    Google Scholar 

  41. V.K. Singh, V. Singh, P.K. Yadav, S. Chandra, D. Bano, B. Koch, M. Talat, S.H. Hasan, J. Photochem. Photobiol. A Chem. 384, 112042 (2019)

    Google Scholar 

  42. D. Bano, V. Kumar, S. Chandra, V.K. Singh, S. Mohan, D.K. Singh, M. Talat, S.H. Hasan, Opt. Mater. (Amst). 92, 311 (2019)

    ADS  Google Scholar 

  43. D. Bano, V. Kumar, V.K. Singh, S.H. Hasan, New J. Chem. 42, 5814 (2018)

    Google Scholar 

  44. A.-M. Alam, B.-Y. Park, Z.K. Ghouri, M. Park, H.-Y. Kim, Green Chem. 17, 3791 (2015)

    Google Scholar 

  45. R. Sinha, A.P. Bidkar, R. Rajasekhar, S.S. Ghosh, T.K. Mandal, Can. J. Chem. Eng. 98, 194 (2020)

    Google Scholar 

  46. N. Tejwan, S.K. Saha, J. Das, Adv. Colloid Interface Sci. 275, 102046 (2019)

    Google Scholar 

  47. R. Das, R. Bandyopadhyay, P. Pramanik, Mater. Today Chem. 8, 96 (2018)

    Google Scholar 

  48. H. Eskalen, S. Uruş, S. Cömertpay, A.H. Kurt, Ş. Özgan, Ind. Crops Prod. 147, 112209 (2020)

    Google Scholar 

  49. R.K. Shukla, J. Mirzaei, A. Sharma, D. Hofmann, T. Hegmann, W. Haase, RSC Adv. 5, 34491 (2015)

    Google Scholar 

  50. M. Urbanski, J. Mirzaei, A. Sharma, D. Hofmann, H.S. Kitzerow, T. Hegmann, Liq. Cryst. 43, 183 (2016)

    Google Scholar 

  51. R.K. Khan, S. Turlapati, N.V.S. Rao, S. Ghosh, J. Mol. Liq. 225, 328 (2017)

    Google Scholar 

  52. V. Arul, T.N.J.I. Edison, Y.R. Lee, M.G. Sethuraman, J. Photochem. Photobiol. B Biol. 168, 142 (2017)

    Google Scholar 

  53. V. Arul, M.G. Sethuraman, ACS Omega 4, 3449 (2019)

    Google Scholar 

  54. H. Zhang, J. You, J. Wang, X. Dong, R. Guan, D. Cao, Dye. Pigment. 173, 107950 (2020)

    Google Scholar 

  55. B. De, N. Karak, RSC Adv. 3, 8286 (2013)

    Google Scholar 

  56. Y. Wang, Y. Man, S. Li, S. Wu, X. Zhao, F. Xie, Q. Qu, W.S. Zou, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117594 (2020)

    Google Scholar 

  57. G. Kocakülah, S. Balci, O. Köysal, J. Electron. Mater. 49, 3427 (2020)

    ADS  Google Scholar 

  58. T. Vimal, K. Agrahari, R.K. Sonker, R. Manohar, J. Mol. Liq. 290, 111241 (2019)

    Google Scholar 

  59. T. D. Ibragimov, A. R. Imamaliyev, G. F. Ganizade, Fullerenes Nanotub. Carbon Nanostruct. 0, 1 (2020).

  60. P.J. Jessy, V. Bambole, R.R. Deshmukh, N. Patel, J. Mol. Liq. 281, 480 (2019)

    Google Scholar 

  61. R. Mishra, J. Hazarika, A. Hazarika, B. Gogoi, R. Dubey, D. Bhattacharjee, K.N. Singh, P.R. Alapati, G.K. Choudhury, Liq. Cryst. 45, 1661 (2018)

    Google Scholar 

  62. Z. Chen, L. Jiang, H. Ma, Chem. Phys. Lett. 645, 205 (2016)

    ADS  Google Scholar 

  63. R. Banu, C. Shahina, C.M. Subhan, R. Dinesh, K. Fakruddin, Mol. Cryst. Liq. Cryst. 665, 238 (2018)

    Google Scholar 

  64. M. Mrukiewicz, K. Kowiorski, P. Perkowski, R. Mazur, M. Djas, Beilstein J. Nanotechnol. 10, 71 (2019)

    Google Scholar 

  65. S. Pilla, J.A. Hamida, N.S. Sullivan, Rev. Sci. Instrum. 70, 4055 (1999)

    ADS  Google Scholar 

  66. S.P. Yadav, M. Pande, R. Manohar, S. Singh, J. Mol. Liq. 208, 34 (2015)

    Google Scholar 

  67. R. Katiyar, G. Pathak, A. Srivastava, J. Herman, R. Manohar, Soft Mater. 16, 126 (2018)

    Google Scholar 

  68. N. Pushpavathi, K.L. Sandhya, R. Pratibha, Liq. Cryst. 46, 666 (2019)

    Google Scholar 

  69. G. Kocakülah, G. Algül, O. Köysal, J. Mol. Liq. 299, 112812 (2020)

    Google Scholar 

  70. G. Yadav, G. Pathak, K. Agrahari, M. Kumar, M.S. Khan, V.S. Chandel, R. Manohar, Chin. Phys. B 28, 034209 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Eskalen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskalen, H. Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Appl. Phys. A 126, 708 (2020). https://doi.org/10.1007/s00339-020-03906-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03906-7

Keywords

Navigation