Skip to main content
Log in

Mixture unified gradient theory: a consistent approach for mechanics of nanobars

  • S.I. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mixture unified gradient theory of elasticity is invoked for the meticulous assessment of peculiar size-dependent behavior of materials with nano-structural features. The size-dependency of the strain gradient theory and the stress gradient theory is consistently integrated with the classical continuum theory within a variational elasticity framework. The boundary-value problem associated with the dynamics of the nano-scale elastic bar is determined and enriched with the proper form of the extra non-standard boundary conditions. The constitutive model of the resultant fields is cast as differential relations in view of the stationarity of the proposed functional. The efficacy of the established generalized continuum theory in the accurate description of the size-effects at the ultra-small scale is put into evidence via electrostatic and elastodynamic analysis of nanobars. The nanoscopic characteristics of the wave dispersion are analytically addressed and appropriately compared with the counterpart experimental measurements. The elastostatic size-dependent behavior of nanobars is rigorously examined by applying an efficacious solution approach. Size-dependent elastostatic response of nanobars with kinematic constraints of interest in nano-mechanics are analytically determined and graphically illustrated. A promising approach to tackling the statics and dynamics of structural bar-type modules of advanced nano-systems is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. You, C. Li, D. Zhou, B. Kedong, A piezoelectrically tunable resonator based on carbon and boron nitride coaxial heteronanotubes. Appl. Phys. A 128, 667 (2022). https://doi.org/10.1007/s00339-022-05794-5

    Article  ADS  Google Scholar 

  2. A. Karabatak, F. Danışman-Kalındemirtaş, E. Tan, E.-K. Serap, K. Selcan, Kappa carrageenan/PEG-CuO nanoparticles as a multifunctional nanoplatform: digital colorimetric biosensor and anticancer drug nanocarrier. Appl. Phys. A 128, 661 (2022). https://doi.org/10.1007/s00339-022-05802-8

    Article  ADS  Google Scholar 

  3. M. Rigi Jangjoo, M. Berahman, Room-temperature nitrogen dioxide gas sensor based on graphene oxide nanoribbons decorated with MoS2 nanospheres. Appl. Phys. A 128, 523 (2022). https://doi.org/10.1007/s00339-022-05605-x

    Article  ADS  Google Scholar 

  4. K. de Oliveira Gonçalves, F.R.O. Silva, L.C. Courrol, Low-cost hydrogen peroxide sensor based on the dual fluorescence of Plinia cauliflora silver nanoparticles. Appl. Phys. A 128, 692 (2022). https://doi.org/10.1007/s00339-022-05821-5

    Article  ADS  Google Scholar 

  5. I. Elishakoff, D. Pentaras, K. Dujat, C. Versaci, G. Muscolino, J. Storch, S. Bucas, N. Challamel, T. Natsuki, Y.Y. Zhang, C.M. Wang, G. Ghyselinck, Carbon nanotubes and nano sensors: vibrations, buckling, and ballistic impact (ISTE-Wiley, London, 2012)

    Book  Google Scholar 

  6. E.C. Aifantis, On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992). https://doi.org/10.1016/0020-7225(92)90141-3

    Article  MATH  Google Scholar 

  7. C. Polizzotto, Gradient elasticity and nonstandard boundary conditions. Int. J. Solids Struct. 40, 7399–7423 (2003). https://doi.org/10.1016/j.ijsolstr.2003.06.001

    Article  MATH  Google Scholar 

  8. S. Forest, K. Sab, Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012). https://doi.org/10.1016/j.mechrescom.2011.12.002

    Article  Google Scholar 

  9. C. Polizzotto, Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models. Int. J. Solids Struct. 80, 405–419 (2016). https://doi.org/10.1016/j.ijsolstr.2015.09.015

    Article  Google Scholar 

  10. S. Fattaheian Dehkordi, Y. Tadi Beni, Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells. Appl. Phys. A 128, 320 (2022). https://doi.org/10.1007/s00339-022-05386-3

    Article  ADS  Google Scholar 

  11. A. Ashrafi Dehkordi, R. Jahanbazi Goojani, Y. Tadi Beni, Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory. Appl. Phys. A 128, 478 (2022). https://doi.org/10.1007/s00339-022-05584-z

    Article  ADS  Google Scholar 

  12. R. Tiwari, R. Kumar, A.E. Abouelregal, Thermoelastic vibrations of nano-beam with varying axial load and ramp type heating under the purview of Moore–Gibson–Thompson generalized theory of thermoelasticity. Appl. Phys. A 128, 160 (2022). https://doi.org/10.1007/s00339-022-05287-5

    Article  ADS  Google Scholar 

  13. M. Ramezani, M. Rezaiee-Pajand, F. Tornabene, Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory. Int. J. Non. Linear Mech. 140, 103923 (2022). https://doi.org/10.1016/j.ijnonlinmec.2022.103923

    Article  ADS  Google Scholar 

  14. J.R. Banerjee, S.O. Papkov, T.P. Vo, I. Elishakoff, Dynamic stiffness formulation for a micro beam using Timoshenko-Ehrenfest and modified couple stress theories with applications. J. Vib. Control. (2021). https://doi.org/10.1177/10775463211048272

    Article  Google Scholar 

  15. S.K. Jena, S. Chakraverty, V. Mahesh, D. Harursampath, Application of Haar wavelet discretization and differential quadrature methods for free vibration of functionally graded micro-beam with porosity using modified couple stress theory. Eng. Anal. Boundary Elem. 140, 167–185 (2022). https://doi.org/10.1016/j.enganabound.2022.04.009

    Article  MathSciNet  MATH  Google Scholar 

  16. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002). https://doi.org/10.1007/b97697

    Book  MATH  Google Scholar 

  17. A.E. Abouelregal, B. Akgöz, Ö. Civalek, Nonlocal thermoelastic vibration of a solid medium subjected to a pulsed heat flux via Caputo-Fabrizio fractional derivative heat conduction. Appl. Phys. A 128, 660 (2022). https://doi.org/10.1007/s00339-022-05786-5

    Article  ADS  Google Scholar 

  18. X. Yan, Free vibration analysis of a rotating nanobeam using integral form of Eringen’s nonlocal theory and element-free Galerkin method. Appl. Phys. A 128, 641 (2022). https://doi.org/10.1007/s00339-022-05714-7

    Article  ADS  Google Scholar 

  19. H.M. Shodja, H. Moosavian, Weakly nonlocal micromorphic elasticity for diamond structures vis-à-vis lattice dynamics. Mech. Mater. 147, 103365 (2020). https://doi.org/10.1016/j.mechmat.2020.103365

    Article  Google Scholar 

  20. H.M. Numanoğlu, H. Ersoy, Ö. Civalek, A.J.M. Ferreira, Derivation of nonlocal FEM formulation for thermo-elastic Timoshenko beams on elastic matrix. Compos. Struct. 273, 114292 (2021). https://doi.org/10.1016/j.compstruct.2021.114292

    Article  Google Scholar 

  21. A.A. Pisano, P. Fuschi, C. Polizzotto, Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. ZAMM J. Appl. Math. Mech. 101, 202000152 (2021). https://doi.org/10.1002/zamm.202000152

    Article  MathSciNet  Google Scholar 

  22. Ö. Civalek, B. Uzun, M.Ö. Yaylı, B. Akgöz, Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  23. I. Elishakoff, A. Ajenjo, D. Livshits, Generalization of Eringen’s result for random response of a beam on elastic foundation. Eur. J. Mech. A Solids 81, 103931 (2020). https://doi.org/10.1016/j.euromechsol.2019.103931

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A.C. Aifantis, On the gradient approach–relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011). https://doi.org/10.1016/j.ijengsci.2011.03.016

    Article  MathSciNet  Google Scholar 

  25. A.C. Aifantis, Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003). https://doi.org/10.1016/S0167-6636(02)00278-8

    Article  Google Scholar 

  26. S.A. Faghidian, Flexure mechanics of nonlocal modified gradient nanobeams. J. Comput. Des. Eng. 8, 949–959 (2021). https://doi.org/10.1093/jcde/qwab027

    Article  Google Scholar 

  27. S.A. Faghidian, Contribution of nonlocal integral elasticity to modified strain gradient theory. Eur. Phys. J. Plus 136, 559 (2021). https://doi.org/10.1140/epjp/s13360-021-01520-x

    Article  Google Scholar 

  28. S.A. Faghidian, K.K. Żur, J.N. Reddy, A mixed variational framework for higher-order unified gradient elasticity. Int. J. Eng. Sci. 170, 103603 (2022). https://doi.org/10.1016/j.ijengsci.2021.103603

    Article  MathSciNet  MATH  Google Scholar 

  29. S.A. Faghidian, Two-phase local/nonlocal gradient mechanics of elastic torsion. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6877

    Article  Google Scholar 

  30. S.A. Faghidian, Higher-order mixture nonlocal gradient theory of wave propagation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6885

    Article  MATH  Google Scholar 

  31. X.W. Zhu, L. Li, Three-dimensionally nonlocal tensile nanobars incorporating surface effect: a self-consistent variational and well-posed model. Sci. China Technol. Sci. 64, 2495–2508 (2021). https://doi.org/10.1007/s11431-021-1822-0

    Article  Google Scholar 

  32. Y. Jiang, L. Li, Y. Hu, A nonlocal surface theory for surface–bulk interactions and its application to mechanics of nanobeams. Int. J. Eng. Sci. 172, 103624 (2022). https://doi.org/10.1016/j.ijengsci.2022.103624

    Article  MathSciNet  MATH  Google Scholar 

  33. S.A. Faghidian, K.K. Żur, E. Pan, J. Kim, On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension. Eng. Anal. Boundary Elem. 134, 571–580 (2022). https://doi.org/10.1016/j.enganabound.2021.11.010

    Article  MathSciNet  MATH  Google Scholar 

  34. S.K. Jena, S. Chakraverty, V. Mahesh, D. Harursampath, Wavelet-based techniques for Hygro-Magneto-Thermo vibration of nonlocal strain gradient nanobeam resting on Winkler-Pasternak elastic foundation. Eng. Anal. Boundary Elem. 140, 494–506 (2022). https://doi.org/10.1016/j.enganabound.2022.04.037

    Article  MathSciNet  MATH  Google Scholar 

  35. G.T. Monaco, N. Fantuzzi, F. Fabbrocino, R. Luciano, Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory. Compos. Struct. 262, 113337 (2021). https://doi.org/10.1016/j.compstruct.2020.113337

    Article  Google Scholar 

  36. G.T. Monaco, N. Fantuzzi, F. Fabbrocino, R. Luciano, Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment. Math. 9, 567 (2021). https://doi.org/10.3390/math9050567

    Article  Google Scholar 

  37. W. Xiao, L. Li, M. Wang, Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory. Appl. Phys. A 123, 388 (2017). https://doi.org/10.1007/s00339-017-1007-1

    Article  ADS  Google Scholar 

  38. S.K. Jena, S. Chakraverty, M. Malikan, H. Mohammad-Sedighi, Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int. J. Appl. Mech. 12, 2050054 (2020). https://doi.org/10.1142/S1758825120500544

    Article  Google Scholar 

  39. H.M. Sedighi, M. Malikan, A. Valipour, K.K. Żur, Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method. J. Comput. Des. Eng. 7, 591–602 (2020). https://doi.org/10.1093/jcde/qwaa041

    Article  Google Scholar 

  40. A.E. Abouelregal, H.M. Sedighi, A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore–Gibson–Thompson thermodiffusion theory. Appl. Phys. A 127, 1–4 (2021). https://doi.org/10.1007/s00339-021-04725-0

    Article  Google Scholar 

  41. R. Barretta, S.A. Faghidian, F. Marotti de Sciarra, Aifantis versus Lam strain gradient models of Bishop elastic rods. Acta. Mech. 230, 2799–2812 (2019). https://doi.org/10.1007/s00707-019-02431-w

    Article  MathSciNet  MATH  Google Scholar 

  42. S.A. Faghidian, K.K. Żur, J.N. Reddy, A.J.M. Ferreira, On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity. Compos. Struct. 279, 114819 (2022). https://doi.org/10.1016/j.compstruct.2021.114819

    Article  Google Scholar 

  43. W. Cochran, The dynamics of atoms in crystals (Edward Arnold, London, 1973)

    Google Scholar 

  44. X. Zhu, L. Li, Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int. J. Mech. Sci. 133, 639–650 (2017). https://doi.org/10.1016/j.ijmecsci.2017.09.030

    Article  Google Scholar 

  45. S.A. Faghidian, Analytical inverse solution of eigenstrains and residual fields in autofrettaged thick-walled tubes. ASME J. Pressure Vessel. Technol. 139, 031205 (2017). https://doi.org/10.1115/1.4034675

    Article  Google Scholar 

  46. S.A. Faghidian, Analytical approach for inverse reconstruction of eigenstrains and residual stresses in autofrettaged spherical pressure vessels. ASME J. Pressure Vessel. Technol. 139, 041202 (2017). https://doi.org/10.1115/1.4035980

    Article  Google Scholar 

  47. M.A. Caprio, LevelScheme: a level scheme drawing and scientific figure preparation system for Mathematica. Comput. Phys. Commun. 171, 107–118 (2005). https://doi.org/10.1016/j.cpc.2005.04.010

    Article  ADS  MATH  Google Scholar 

  48. K.K. Żur, S.A. Faghidian, Analytical and meshless numerical approaches to unified gradient elasticity theory. Eng. Anal. Boundary Elem. 130, 238–248 (2021). https://doi.org/10.1016/j.enganabound.2021.05.022

    Article  MathSciNet  MATH  Google Scholar 

  49. S.A. Faghidian, K.K. Żur, I. Elishakoff, Nonlinear flexure mechanics of mixture unified gradient nanobeams. Commun. Nonlinear Sci. Numer. Simul. (2022). https://doi.org/10.1016/j.cnsns.2022.106928.

    Article  Google Scholar 

  50. S.A. Faghidian, I. Elishakoff, Wave propagation in Timoshenko-Ehrenfest nanobeam: a mixture unified gradient theory. ASME J. Vib. Acoust. (2022). https://doi.org/10.1115/1.4055805

    Article  Google Scholar 

  51. S.A. Faghidian, A. Tounsi, Dynamic characteristics of mixture unified gradient elastic nanobeams. Facta Universitatis ser. Mech. Eng. (2022). https://doi.org/10.22190/FUME220703035F

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ali Faghidian or Krzysztof Kamil Żur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghidian, S.A., Żur, K.K. & Rabczuk, T. Mixture unified gradient theory: a consistent approach for mechanics of nanobars. Appl. Phys. A 128, 996 (2022). https://doi.org/10.1007/s00339-022-06130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06130-7

Keywords

Navigation