Skip to main content
Log in

Impact of co-doping with Mn and Co/Mn on the structural, microstructural, dielectric, impedance, and magnetic characteristics of multiferroic bismuth ferrite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth ferrite with manganese doping (BiFe0.95Mn0.05O3 or BFMO) and bismuth ferrite with cobalt and manganese doping (Bi0.95Co0.05Fe0.95Mn0.05O3 or BCoFMO) were both synthesized as nanocrystalline powders by the sol–gel autocombustion technique. X-ray diffraction examination of the powders indicates a rhombohedral distortion in the perovskite phase in both samples. The calcined powders were examined for their microstructure and elemental composition with high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDAX), respectively. Scanning electron microscopy (SEM) was used to examine the microstructures of sintered BMFO and BCoFMO specimens at room temperature. Dielectric characteristics were studied at various frequencies and temperatures and found to follow space charge polarization. At ambient temperature, a vibrating sample magnetometer was used to analyse the materials' magnetic behaviour (M–H loops). Saturation magnetization is significantly increased with increased coercivity in the BCoFMO sample compared to the other sample. Improved structural, dielectric, and magnetic values in these doped systems, however, suggest they'd be an excellent fit for spintronic, multifunctional memories, sensors, and actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu et al., Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  3. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  4. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  5. C.-W. Nan, Appl. Phys. 103, 03110 (2008J)

    Article  Google Scholar 

  6. M. Marzouk, H.M. Hashem, S. Soltan, A.A. Ramadan, J. Mater. Sci. Mater. Electron. 31, 5599 (2020)

    Article  Google Scholar 

  7. A. Roy, R. Gupta, A. Garg, Adv. Condens. Matter Phys. 2012, 1–12 (2012)

    Article  Google Scholar 

  8. S. Ramesh, B. Dhanalakshmi, B.C. Sekhar, P.S.V. Rao, B.P. Rao, C.G. Kim, J. Nanosci. Nanotechnol. 16(10), 11094 (2016)

    Article  Google Scholar 

  9. K.V. Vivekananda, B. Dhanalakshmi, B.P. Rao, P.S.V.S. Rao, Appl. Phys. A 127(3), 1 (2021)

    Article  Google Scholar 

  10. Y.-J. Zhang, H.-G. Zhang, J.-H. Yin, H.-W. Zhang, J.-L. Chen, W.-Q. Wang et al., J. Magn. Magn. Mater. 322, 2251 (2010)

    Article  ADS  Google Scholar 

  11. B. Dhanalakshmi, B.C. Sekhar, K.V. Vivekananda, B.S. Rao, B.P. Rao, P.S.V. Subba Rao, Appl. Phys. A 126(7), 1 (2020)

    Article  Google Scholar 

  12. H.W. Chang, F.T. Yuan, K.T. Tu, S.Y. Lin, C.R. Wang, C.S. Tu, J. Alloys. Compd. 683, 427 (2016)

    Article  Google Scholar 

  13. V.P. Reddy, R.V. Mangalaraja, N.V. Giridharan, M. Ashok, J. Alloys. Compd. 684, 55 (2016)

    Article  Google Scholar 

  14. M. Salavati-Niasari, F. Davar, M. Farhadi, Sol Gel Sci. Technol. 51, 48 (2009J)

    Article  Google Scholar 

  15. K.C. Patil, Bull. Mater. Sci. 16, 533 (1993)

    Article  Google Scholar 

  16. S. Ckakraborty, S. Mukherjee, S. Mukherjee, J. Aust. Ceram. Soc. 51(1), 45–53 (2015)

    Google Scholar 

  17. K. Sreekanth, B. Dhanalakshmi, D. Madhavaprasad, J. Ind. Chem. Soc. 99(9), 100649 (2022)

    Article  Google Scholar 

  18. B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S.V.S. Rao, J. Alloys. Compd. 676, 193 (2016)

    Article  Google Scholar 

  19. A.T. Raghavender, N.H. Hong, J. Mag. 16, 19 (2011)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  21. http://imageJ.nih.gov

  22. R. Das, G.G. Khan, S. Varma, G.D. Mukherjee, K. Mandal, J. Phys. Chem. C 117(39), 2020 (2013)

    Article  Google Scholar 

  23. M.R. Kanth, B. Dhanalakshmi, P.S.V. Subba Rao, B.P. Rao, J. Mater. Eng. Perform 1 (2022)

  24. M.M. Rhaman, M.A. Matin, M.N. Hossain, M.N.I. Khan, M.A. Hakim, M.F. Islam, J. Phys. Chem. Solid 147, 109607 (2020)

    Article  Google Scholar 

  25. G.M. Sravani, N. Murali, B.C. Sekhar, B. Dhanalakshmi, D. Parajuli, T.G. Naidu et al., J. Ind. Chem. Soc. 99(6), 100465 (2022)

    Article  Google Scholar 

  26. C. Beatrice, S. Dobák, V. Tsakaloudi, C. Ragusa, F. Fiorillo, L. Martino et al., AIP Adv. 8, 047803 (2018)

    Article  ADS  Google Scholar 

  27. B. Dhanalakshmi, K. Pratap, B. ParvatheeswaraRao, P.S.V. SubbaRao, J. Mag. Mater. 404, 119 (2016)

    Article  ADS  Google Scholar 

  28. B. Dhanalakshmi, P. Kollu, C.H.W. Barnes, B.P. Rao, P.S.V.S. Rao, Appl. Phys. A 124, 1–8 (2018)

    Article  Google Scholar 

  29. B. Dhanalakshmi, P.S.V.S. Rao, B.P. Rao, C.G. Kim, J. Nanosci. Nanotechnol. 16, 11089 (2016)

    Article  Google Scholar 

  30. K. Sarkar, S. Mukherjee, S. Mukherjee, Process. Appl. Ceram. 9(1), 53–60 (2015)

    Article  Google Scholar 

  31. B. Dhanalakshmi, B. Pratap Kollu, B. Chandra Sekhar, P. Rao, P.S.V. Subba Rao, Ceram. Int. 43, 9272 (2017)

    Article  Google Scholar 

  32. R. Chakraborty, S. Mukherjee, S. Mukherjee, J. Aust. Ceram. Soc. 53, 57–65 (2017)

    Article  Google Scholar 

  33. S. Mukherjee, K. Sarkar, S. Mukherjee, Interceram 64(1–2), 38–43 (2015)

    Google Scholar 

  34. B. Dhanalakshmi, P. Kollu, B.P. Rao, P.S.V.S. Rao, Ceram. Int. 42(2), 2186 (2016)

    Article  Google Scholar 

  35. J.R. Macdonald, Chemistry 223, 25 (1987)

    Google Scholar 

  36. M.J. Verkerk, B.J. Middelhues, A.J. Burggraaf, Solid State Ion. 6, 159 (1982)

    Article  Google Scholar 

  37. S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Ceram Int. 40, 7983 (2014)

    Article  Google Scholar 

  38. B. Dhanalakshmi, K.V. Vivekananda, B.P. Rao, P.S.V.S. Rao, Phys. B 571, 5 (2019)

    Article  ADS  Google Scholar 

  39. K. Sreekanth, B. Dhanalakshmi, D. Madhavaprasad, J. Ind. Chem. Soc. 99(7), 100565 (2022)

    Article  Google Scholar 

  40. B.C. Sekhar, B. Dhanalakshmi, B.S. Rao, S. Ramesh, K.V. Prasad, P.S. Rao et al., Multifunct. Ferroelectr. Mater. 71, 1–19 (2021)

  41. B. Dhanalakshmi, B.C. Sekhar, K.V. Vivekananda, B.S. Rao, B.P. Rao, Appl. Phys. A 126, 1–9 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dhanalakshmi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanalakshmi, B., Sravani, G.M., Suresh, J. et al. Impact of co-doping with Mn and Co/Mn on the structural, microstructural, dielectric, impedance, and magnetic characteristics of multiferroic bismuth ferrite nanoparticles. Appl. Phys. A 129, 452 (2023). https://doi.org/10.1007/s00339-023-06737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06737-4

Keywords

Navigation