Skip to main content
Log in

Reduced graphene oxide (rGO) and 5, 10, 15, 20-tetra-p-tolyl-21H, 23H-porphine (TPTP) composite: highly reproducible and repeatable chemiresistive SO2 sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the current study, a chemiresistive SO2 sensor based on a composite of reduced graphene oxide (rGO) and 5, 10, 15, 20-tetra-p-tolyl-21H, 23H-porphine (TPTP) was developed and extensively studied. Improved Hummers methods were used to synthesize graphene oxide (GO), and a thermally heating bottom-up approach was used to reduce GO to rGO. Gold electrodes were thermally coated on the transparent sheet using a thermal evaporator. The composite of rGO/TPTP was synthesized using a simple chemical method. Structural, morphological, spectroscopic, electrical, and optical studies were carried out using X-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, Fourier-transfer infrared spectroscopy, Raman spectroscopy, current–voltage, and UV–vis spectroscopy, respectively. The sensing response of rGO/TPTP for various concentrations of sulfur dioxide (SO2) was investigated in chemiresistive modality. The rGO/TPTP composite chemiresistive sensor displayed exceptional performance, with a consistent response spanning 1 ppm to 10 ppm. It exhibited outstanding repeatability, linearity, stability, and boasted an impressive limit of detection (LOD) of 1 ppm. This LOD is significantly lower than the recommended permissible exposure limit (PEL) of 5 ppm set by OSHA (Occupational Safety and Health Administration), USA. The sensor based on the rGO/TPTP composite exhibited a very fast response and recovery time of 33 s. and 27 s. respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.-C. Cheng, Sens. Actuat. B Chem. 157, 310–313 (2011). https://doi.org/10.1016/j.snb.2011.03.035

    Article  Google Scholar 

  2. D. Panda, A. Nandi, S.K. Datta, H. Saha, S. Majumdar, RSC Adv. 6, 47337–47348 (2016). https://doi.org/10.1039/C6RA06058G

    Article  ADS  Google Scholar 

  3. W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wu, X. Zhang, P. Li, J. Xu, G. Cheng, ACS Nano 5, 6955–6961 (2011). https://doi.org/10.1021/nn201433r

    Article  Google Scholar 

  4. M.A. Takte, N.N. Ingle, B.N. Dole, M.-L. Tsai, T. Hianik, M.D. Shirsat, Synth. Met. 297, 117411 (2023). https://doi.org/10.1016/j.synthmet.2023.117411

    Article  Google Scholar 

  5. W. Qi, W. Li, Y. Sun, J. Guo, D. Xie, L. Cai, H. Zhu, L. Xiang, T. Ren, Nanotechnology 30, 345503 (2019). https://doi.org/10.1088/1361-6528/ab1ec0

    Article  Google Scholar 

  6. X. Wang, B. Huang, X. Wu, D. Gu, X. Li, Sens. Actuat. B Chem. 337, 129776 (2021). https://doi.org/10.1016/j.snb.2021.129776

    Article  ADS  Google Scholar 

  7. H.-B. Na, X.-F. Zhang, M. Zhang, Z.-P. Deng, X.-L. Cheng, L.-H. Huo, S. Gao, Sens. Actuat. B Chem. 297, 126816 (2019). https://doi.org/10.1016/j.snb.2019.126816

    Article  Google Scholar 

  8. N. Ingle, P. Sayyad, G. Bodkhe, M. Mahadik, T. Al-Gahouari, S. Shirsat, M.D. Shirsat, Appl. Phys. A 126, 1–9 (2020). https://doi.org/10.1007/s00339-020-03907-6

    Article  Google Scholar 

  9. N. Ingle, P. Sayyad, M. Deshmukh, G. Bodkhe, M. Mahadik, T. Al-Gahouari, S. Shirsat, M.D. Shirsat, Appl. Phys. A 127, 1–10 (2021). https://doi.org/10.1007/s00339-021-04288-0

    Article  Google Scholar 

  10. E. Pargoletti, F. Tessore, G.D. Carlo, G.L. Chiarello, G. Cappelletti, Chem. Proc. 5, 60 (2021). https://doi.org/10.3390/CSAC2021-10418

    Article  Google Scholar 

  11. N. Barnea, Health and safety aspects of in-situ burning of oil. National Oceanic and Atmospheric Administration (2017) https://response.restoration.noaa.gov/sites/default/files/health-safety-ISB.pdf

  12. J.D. Bhaliya, V.R. Shah, G. Patel, K. Deshmukh, J. Inorg. Organomet. Polym. Mater. 33, 1–42 (2023). https://doi.org/10.1007/s10904-023-02597-w

    Article  Google Scholar 

  13. Y.C. Wong, B.C. Ang, A. Haseeb, A.A. Baharuddin, Y.H. Wong, J. Electrochem. Soc. 167, 037503 (2020). https://doi.org/10.1149/2.0032003JES

    Article  ADS  Google Scholar 

  14. A. Dey, Mater. Sci. Eng. B 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

  15. E. Pargoletti, G. Cappelletti, Nanomater. 10, 1485 (2020). https://doi.org/10.3390/nano10081485

    Article  Google Scholar 

  16. D. Anghel, A. Lascu, C. Epuran, I. Fratilescu, C. Ianasi, M. Birdeanu, E. Fagadar-Cosma, Int. J. Mol. Sci. 21, 4262 (2020). https://doi.org/10.3390/ijms21124262

    Article  Google Scholar 

  17. S. Singh, J. Deb, U. Sarkar, S. Sharma, A.C.S. Appl, Nano Mater. 3, 9375–9384 (2020). https://doi.org/10.1021/acsanm.0c02011

    Article  Google Scholar 

  18. R. Kumar, A. Kaur, Diam. Relat. Mater. 109, 108039 (2020). https://doi.org/10.1016/j.diamond.2020.108039

    Article  ADS  Google Scholar 

  19. W. Li, J. Guo, L. Cai, W. Qi, Y. Sun, J.-L. Xu, M. Sun, H. Zhu, L. Xiang, D. Xie, Sens. Actuat. B Chem. 290, 443–452 (2019). https://doi.org/10.1016/j.snb.2019.03.133

    Article  Google Scholar 

  20. V. Dhingra, S. Kumar, R. Kumar, A. Garg, A. Chowdhuri, Mater. Res. Express. 7, 065012 (2020). https://doi.org/10.1088/2053-1591/ab9ae7

    Article  ADS  Google Scholar 

  21. P.-G. Su, Y.-L. Zheng, Anal. Methods 13, 782–788 (2021). https://doi.org/10.1039/D0AY02132F

    Article  Google Scholar 

  22. D. Zhang, J. Liu, C. Jiang, P. Li, Sens. Actuat. B Chem. 245, 560–567 (2017). https://doi.org/10.1016/j.snb.2017.01.200

    Article  Google Scholar 

  23. E.B. Fleischer, Acc. Chem. Res. 3, 105–112 (1970). https://doi.org/10.1021/ar50027a004

    Article  Google Scholar 

  24. A. Maimaiti, R. Abdurahman, N. Kari, Q.-R. Ma, K. Wumaier, P. Nizamidin, S. Abliz, A. Yimit, J. Mod. Opt. 67, 507–514 (2020). https://doi.org/10.1080/09500340.2020.1758817

    Article  ADS  Google Scholar 

  25. M.G. Goudappagouda, G.U. Kulkarni, S.S. Babu, Chem. Eur. J. 24, 7695–7701 (2018). https://doi.org/10.1002/chem.201800197

    Article  Google Scholar 

  26. A.R. Monteiro, M.G.P. Neves, T. Trindade, ChemPlusChem 85, 1857–1880 (2020). https://doi.org/10.1002/cplu.202000455

    Article  Google Scholar 

  27. G. Magna, M. Šakarašvili, M. Stefanelli, G. Giancane, S. Bettini, L. Valli, L. Ustrnul, V. Borovkov, R. Aav, D. Monti, A.C.S. Appl, Mater. Interfaces. 15, 30674–30683 (2023). https://doi.org/10.1021/acsami.3c05177

    Article  Google Scholar 

  28. M. Liu, Y.J. Chen, X. Huang, L.Z. Dong, M. Lu, C. Guo, D. Yuan, Y. Chen, G. Xu, S.L. Li, Angew. Chem. Int. Ed. 61, e202115308 (2022). https://doi.org/10.1002/anie.202115308

    Article  ADS  Google Scholar 

  29. C.H. Esteves, B.A. Iglesias, R.W. Li, T. Ogawa, K. Araki, J. Gruber, Sens. Actuat. B Chem. 193, 136–141 (2014). https://doi.org/10.1016/j.snb.2013.11.022

    Article  Google Scholar 

  30. A.D. Dunbar, T.H. Richardson, A.J. McNaughton, J. Hutchinson, C.A. Hunter, J. Phys. Chem. B 110, 16646–16651 (2006). https://doi.org/10.1021/jp0626059

    Article  Google Scholar 

  31. Z.-W. Hao, M.-M. Dong, R.-Q. Zhang, C.-K. Wang, X.-X. Fu, Phys. Chem. Chem. Phys. 23, 11852–11862 (2021). https://doi.org/10.1039/D1CP00747E

    Article  Google Scholar 

  32. H.T. Ngo, K. Minami, G. Imamura, K. Shiba, G. Yoshikawa, Sensor 18, 1640 (2018). https://doi.org/10.3390/s18051640

    Article  ADS  Google Scholar 

  33. D. Klyamer, R. Shutilov, T. Basova, Sensor 22, 895 (2022). https://doi.org/10.3390/s22030895

    Article  ADS  Google Scholar 

  34. M.D. Shirsat, T. Sarkar, J. Kakoullis Jr., N.V. Myung, B. Konnanath, A. Spanias, A. Mulchandani, J. Phys. Chem. C 116, 3845–3850 (2012). https://doi.org/10.1021/jp210582t

    Article  Google Scholar 

  35. A. Rushi, K. Datta, P. Ghosh, A. Mulchandani, M. Shirsat, Phys. Status Solidi A 215, 1700956 (2018). https://doi.org/10.1002/pssa.201700956

    Article  Google Scholar 

  36. S.M. Shirsat, C.-H. Chiang, G.A. Bodkhe, M.D. Shirsat, M.-L. Tsai, Discover Nano 18, 34 (2023). https://doi.org/10.1186/s11671-023-03813-9

    Article  Google Scholar 

  37. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  38. A.T. Habte, D.W. Ayele, Adv. Mater. Sci. Eng. 2019, 9 (2019). https://doi.org/10.1155/2019/5058163

    Article  Google Scholar 

  39. G. Surekha, K.V. Krishnaiah, N. Ravi, R.P. Suvarna, J. Phys. Conf. Ser. 1495, 012012 (2020). https://doi.org/10.1088/1742-6596/1495/1/012012

    Article  Google Scholar 

  40. M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, J. Spectrosc. 2016, 6 (2016). https://doi.org/10.1155/2016/7520741

    Article  Google Scholar 

  41. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. Boehm, J. Phys. Chem. Solids 67, 1106–1110 (2006). https://doi.org/10.1016/j.jpcs.2006.01.031

    Article  ADS  Google Scholar 

  42. N. Hidayah, W.-W. Liu, C.-W. Lai, N. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, AIP Conf. Proc. 1892, 150002 (2017). https://doi.org/10.1063/1.5005764

    Article  Google Scholar 

  43. A. Abid, P. Sehrawat, S. Islam, P. Mishra, S. Ahmad, Sci. Rep. 8, 3537 (2018). https://doi.org/10.1038/s41598-018-21686-2

    Article  ADS  Google Scholar 

  44. S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, RSC Adv. 2, 8827–8832 (2012). https://doi.org/10.1039/C2RA20746J

    Article  ADS  Google Scholar 

  45. N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. Sharma, K. Sachdev, Macromol. Symp. 376, 1700006 (2017). https://doi.org/10.1002/masy.201700006

    Article  Google Scholar 

  46. F. Thema, M. Moloto, E. Dikio, N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, J. Chem. 2013, 2090–9063 (2013). https://doi.org/10.1155/2013/150536

    Article  Google Scholar 

  47. Y. Zhang, P. Chen, M. Liu, Chem. Eur. J. 14, 1793–1803 (2008). https://doi.org/10.1002/chem.200701333

    Article  Google Scholar 

  48. A.D. Dunbar, T.H. Richardson, J. Hutchinson, C.A. Hunter, Sens. Actuat. B Chem. 128, 468–481 (2008). https://doi.org/10.1016/j.snb.2007.07.049

    Article  Google Scholar 

  49. G. Zhang, A.F. El-Mahdy, L.R. Ahmed, B.M. Matsagar, S. Al-Saeedi, S.-W. Kuo, K.C.-W. Wu, Polymers 14, 449 (2022). https://doi.org/10.3390/polym14030449

    Article  Google Scholar 

  50. V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Optik 143, 115–124 (2017). https://doi.org/10.3390/nano11030560

    Article  ADS  Google Scholar 

  51. G. Zhong, J. Wu, Y. Wang, R. Li, J. Xu, J. Sun, Thin Solid Films 517, 3340–3344 (2009). https://doi.org/10.1016/j.tsf.2008.12.041

    Article  ADS  Google Scholar 

  52. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143

    Article  ADS  Google Scholar 

  53. S. Lv, H. Hu, J. Zhang, X. Luo, Y. Lei, L. Sun, Nanomaterials 7, 457 (2017). https://doi.org/10.3390/nano7120457

    Article  Google Scholar 

  54. H. Saleem, M. Haneef, H.Y. Abbasi, Mater. Chem. Phys. 204, 1–7 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.020

    Article  Google Scholar 

  55. S. Claramunt, A. Varea, D. Lopez-Diaz, M.M. Velázquez, A. Cornet, A. Cirera, J. Phys. Chem. C 119, 10123–10129 (2015). https://doi.org/10.1021/acs.jpcc.5b01590

    Article  Google Scholar 

  56. W.-H. Chiang, C.-Y. Hsieh, S.-C. Lo, Y.-C. Chang, T. Kawai, Y. Nonoguchi, Carbon 109, 49–56 (2016). https://doi.org/10.1016/j.carbon.2016.07.054

    Article  Google Scholar 

  57. H.Y. Mohammed, M.A. Farea, Z.M. Ali, S.M. Shirsat, M.-L. Tsai, M.D. Shirsat, J. Chem. Eng. 441, 136010 (2022). https://doi.org/10.1016/j.cej.2022.136010

    Article  Google Scholar 

  58. B. Lavakusa, N. Belachew, K. Basavaiah, Int. J. Adv. Res. 5, 405 (2017). https://doi.org/10.21474/IJAR01/3526

    Article  Google Scholar 

  59. R. Jain, R. Bagul, P. Wadekar, S. Some, J. Mater. Sci. Mater. Electron. 32, 13100–13107 (2021). https://doi.org/10.1007/s10854-021-05786-w

    Article  Google Scholar 

  60. D.R. Rout, H.M. Jena, Environ. Sci. Pollut. Res. 29, 73444–73460 (2022). https://doi.org/10.1007/s11356-022-21018-y

    Article  Google Scholar 

  61. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Sensor 16, 103 (2016). https://doi.org/10.3390/s16010103

    Article  ADS  Google Scholar 

  62. R. Kumar, D. Avasthi, A. Kaur, Sens. Actuat. B Chem. 242, 461–468 (2017). https://doi.org/10.1016/j.snb.2016.11.018

    Article  Google Scholar 

  63. A. Chen, R. Liu, X. Peng, Q. Chen, J. Wu, ACS Appl. Mater. Interfaces 9, 37191–37200 (2017). https://doi.org/10.1021/acsami.7b11244

    Article  Google Scholar 

  64. V. Chaudhary, A. Kaur, Polym. Int. 64, 1475–1481 (2015). https://doi.org/10.1002/pi.4944

    Article  Google Scholar 

  65. Q. Li, J. Wu, L. Huang, J. Gao, H. Zhou, Y. Shi, Q. Pan, G. Zhang, Y. Du, W. Liang, J. Mater. Chem. A. 6, 12115–12124 (2018). https://doi.org/10.1039/C8TA02036A

    Article  Google Scholar 

  66. P.W. Sayyad, S.S. Khan, N.N. Ingle, G.A. Bodkhe, T. Al-Gahouari, M.M. Mahadik, S.M. Shirsat, M.D. Shirsat, Appl. Phys. A 126, 1–8 (2020). https://doi.org/10.1007/s00339-020-04053-9

    Article  Google Scholar 

  67. V. van Cat, N.X. Dinh, V.N. Phan, A.T. Le, M.H. Nam, V.D. Lam, T. van Dang, N. van Quy, Mater. Today Commun. 25, 101682 (2020). https://doi.org/10.1016/j.mtcomm.2020.101682

    Article  Google Scholar 

  68. J. Nisar, Z. Topalian, A. De Sarkar, L. Österlund, R. Ahuja, A.C.S. Appl, Mater. Interfaces 5, 8516–8522 (2013). https://doi.org/10.1021/am4018835

    Article  Google Scholar 

  69. V. Chaudhary, H. Singh, A. Kaur, Polym. Int. 66, 699–704 (2017). https://doi.org/10.1002/pi.5311

    Article  Google Scholar 

  70. C.A. Betty, S. Choudhury, S. Arora, Sens. Actuat. B Chem. 220, 288–294 (2015). https://doi.org/10.1016/j.snb.2015.05.074

    Article  Google Scholar 

  71. P. Hidalgo, R.H. Castro, A.C. Coelho, D. Gouvêa, Chem. Mater. 17, 4149–4153 (2005). https://doi.org/10.1021/cm049020g

    Article  Google Scholar 

  72. V. Dua, S.P. Surwade, S. Ammu, X. Zhang, S. Jain, S.K. Manohar, Macromolecules 42, 5414–5415 (2009). https://doi.org/10.1021/ma901422d

    Article  ADS  Google Scholar 

  73. Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, Sen. Actuat. B: Chem. 298, 126870 (2019). https://doi.org/10.1016/j.snb.2019.126870

    Article  Google Scholar 

  74. S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tang, Appl. Surf. Sci. 393, 457–466 (2017). https://doi.org/10.1016/j.apsusc.2016.09.098

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to Inter-University Accelerator Center (IUAC), New Delhi, India (UFR no. 69330), UGC—DAE CSR, Indore (Project No. CRS/2021-22/ 01/456 dated March 30, 2022), DST—SERB, New Delhi (Project No. EEQ/2017/000645), UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016), DST-FIST (Project No. SR/FST/PSI-210/2016(c) dtd. 16/12/2016) and Rashtriya Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra for providing financial support. Abhaysinh S. Khune gratefully acknowledges to the Dr. Babasaheb Ambedkar Research and Training Institute fellowship for doctor of philosophy as financial assistance, Vijaykiran N. Narwade gratefully acknowledges to the UGC DS Kothari post-doctoral fellowship for financial assistance. Mahendra D, Shirsat gratefully acknowledges the Slovak Academic Information Agency (SAIA) and Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic, for the sanction of scholarship under the framework of National Scholarship Program (NSP) of Slovak Republic.

Author information

Authors and Affiliations

Authors

Contributions

ASK experimental work, data analysis, manuscript drafting. VNN data analysis, manuscript editing. BND data analysis. NNI data analysis, editing of the manuscript. M-LT data analysis. TH review and editing of manuscript. MDS conceptualization, supervision, planning of experiments, data analysis, drafting and editing of the manuscript and project administration.

Corresponding author

Correspondence to Mahendra D. Shirsat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khune, A.S., Narwade, V.N., Dole, B.N. et al. Reduced graphene oxide (rGO) and 5, 10, 15, 20-tetra-p-tolyl-21H, 23H-porphine (TPTP) composite: highly reproducible and repeatable chemiresistive SO2 sensor. Appl. Phys. A 130, 60 (2024). https://doi.org/10.1007/s00339-023-07194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07194-9

Keywords

Navigation