Skip to main content
Log in

The effect of gain and absorption on surface plasmons in metal nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The compensation of loss in metal by gain in interfacing dielectric has been demonstrated in a mixture of aggregated silver nanoparticles and rhodamine 6G dye. An increase of the quality factor of surface plasmon (SP) resonance was evidenced by the sixfold enhancement of Rayleigh scattering. The compensation of plasmonic losses with gain enables a host of new applications for metallic nanostructures, including low- or no-loss negative-index metamaterials.

We have also predicted and experimentally observed a suppression of SP resonance in metallic nanoparticles embedded in dielectric host with absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Ritchie, Surf. Sci. 34, 1 (1973)

    Article  Google Scholar 

  2. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  3. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)

    Google Scholar 

  4. K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)

    Article  Google Scholar 

  5. M. Quinten, J. Clust. Sci. 10, 319 (1999)

    Article  Google Scholar 

  6. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)

    ADS  Google Scholar 

  7. R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B 16, 1824 (1999)

    ADS  Google Scholar 

  8. M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, R16356 (2000)

    Article  ADS  Google Scholar 

  9. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Chem. Phys. 116, 6755 (2002)

    Article  ADS  Google Scholar 

  10. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys. 14, R597 (2002)

    Google Scholar 

  11. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  12. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  13. V.A. Markel, V.M. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong, Phys. Rev. B 53, 2425 (1996)

    Article  ADS  Google Scholar 

  14. V.M. Shalaev, E.Y. Poliakov, V.A. Markel, Phys. Rev. B 53, 2437 (1996)

    Article  ADS  Google Scholar 

  15. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal–Dielectric Films (Springer Tracts in Modern Physics, Springer, Berlin Heidelberg, 2000) Vol. 158

  16. L.E. Brus, A. Nitzan, Chemical processing using electromagnetic field enhancement, U.S. Patent No.: 4481091 (21 October, 1983)

  17. L. Hutson, Mater. World 13, 18 (2005)

    Google Scholar 

  18. T.L. Ferrell, Phys. Rev. B 50, 14738 (1994)

    Article  ADS  Google Scholar 

  19. E.J. S’anchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  20. M.I. Stockman, Optoelectron. Instrum. Data Proc. 3, 27 (1989)

    Google Scholar 

  21. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)

    Article  ADS  Google Scholar 

  22. D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86, 063106 (2005)

    Article  Google Scholar 

  23. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  24. V.M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  25. A.N. Sudarkin, P.A. Demkovich, Sov. Phys. Technol. Phys. 34, 764 (1989)

    Google Scholar 

  26. M.P. Nezhad, K. Tetz, Y. Fainman, Opt. Express. 12, 4072 (2004)

    Article  ADS  Google Scholar 

  27. I. Avrutsky, Phys. Rev. B 70, 155416 (2004)

    Article  ADS  Google Scholar 

  28. J. Seidel, S. Grafstroem, L. Eng, Phys. Rev. Lett. 94, 177401 (2005)

    Article  ADS  Google Scholar 

  29. N.M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004)

    Article  ADS  Google Scholar 

  30. D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 027402 (2003)

    Article  ADS  Google Scholar 

  31. A.Y. Smuk, N.M. Lawandy, Appl. Phys. B 84, 125 (2006)

    Article  ADS  Google Scholar 

  32. V.P. Drachev, A.K. Buin, H. Nakotte, V.M. Shalaev, Nano Lett. 4, 1535 (2004)

    Article  Google Scholar 

  33. P.B. Johnson, R.W. Christy, Phys. Rev. B. 6, 4370 (1972)

    Article  ADS  Google Scholar 

  34. F. Hide, B.J. Schwartz, M.A. Díaz-García, A.J. Heeger, Synth. Met. 91, 35 (1997)

    Article  Google Scholar 

  35. M.A. Noginov, M. Vondrova, S.N. Williams, M. Bahoura, V.I. Gavrilenko, S.M. Black, V.P. Drachev, V.M. Shalaev, A. Sykes, J. Opt. A 7, S219 (2005)

    Google Scholar 

  36. M.A. Noginov, G. Zhu, C. Davison, A.K. Pradhan, K. Zhang, M. Bahoura, M. Codrington, V.P. Drachev, V.M. Shalaev, V.F. Zolin, J. Mod. Opt. 52, 2331 (2005)

    Article  ADS  Google Scholar 

  37. N.M. Lawandy, Nano-particle plasmonics in active media, In: Proc. SPIE Vol. 5924, Complex mediums VI: Light and Complexity, M.W. McCall, G. Dewar, M.A. Noginov (Eds.), (SPIE, Bellingham, WA, 2005) pp. 59240G/1-13, 2005

  38. P. Hildebrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984)

    Article  Google Scholar 

  39. W. Grochala, A. Kudelski, J. Bukowska, J. Raman Spectrosc. 29, 681 (1998)

    Article  Google Scholar 

  40. R.F. Kubin, A.N. Fletcher, J. Luminesc. 27, 455 (1982)

    Article  Google Scholar 

  41. D. Magde, R. Wong, P.G. Seybold, Photochem. Photobiol. 75, 327 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.M. Shalaev.

Additional information

PACS

61.46.Df; 73.20.Mf; 78.67.Bf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noginov, M., Zhu, G., Bahoura, M. et al. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B 86, 455–460 (2007). https://doi.org/10.1007/s00340-006-2401-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2401-0

Keywords

Navigation