Skip to main content
Log in

Enhanced oscillator strengths and optical parameters of doped ZnS bulk and nanophosphors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We synthesize and investigate the oscillator-strength (OS), dipole-moment (DM), and integrated cross-section values (ICSVs) of singly (Mn) and doubly (Mn and Co or Ni) doped samples of ZnS bulk and nanophosphors. The oscillator-strength values (OSVs) are found to enhance by three orders of magnitude when Co or Ni dopant is incorporated in ZnS:Mn bulk phosphors, which strongly suggests that a quencher dopant triggered an energy-transfer process in the host ZnS material. Nevertheless, although these quencher dopants were previously considered to kill the luminescence from the host material, we used these dopants in ZnS:Mn to create an additional pathway for the relaxation of the carrier, and to initiate the energy-transfer mechanism. On the other hand, a four orders of magnitude enhancement in the OSVs was observed on incorporating the quencher dopants in ZnS:Mn nanophosphors, which is attributed to the fact that our nanosamples are related to a strong-confinement case while the quencher dopant played a significant role in the variation of OSVs. Moreover, the analysis of OSVs showed that excitonic/defect level emission from ZnS host is due to a weak electric dipole transition (WEDT), while a magnetic dipole transition (MDT) dominates in the case of ZnS:Mn nanophosphors. Based on the present investigations, we clearly obtained an origin of excitonic- and impurity-related emission from the doped ZnS bulk and nanophosphor samples, which were almost vague in the previous studies of other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chander, Mater. Sci. Eng. Rep. 49, 113 (2005)

    Article  Google Scholar 

  2. R.F. Zhuo, H.T. Feng, D. Yan, J.T. Chen, J.J. Feng, J.Z. Liu, P.X. Yan, J. Cryst. Growth 310, 3240 (2008)

    Article  ADS  Google Scholar 

  3. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, G. Zhou, J. Phys. Chem. Solids 62, 1181 (2001)

    Article  ADS  Google Scholar 

  4. S. Coe, W.K. Woo, M.G. Bhawendi, V. Bulovic, Nature 370, 354 (2003)

    Google Scholar 

  5. B.J.H. Bang, R.J. Helmich, K.S. Suslick, Adv. Mater. 20, 2599 (2008)

    Article  Google Scholar 

  6. A. Datta, S.K. Panda, S. Chaudhuri, J. Solid State Chem. 181, 2332 (2008)

    Article  ADS  Google Scholar 

  7. Q. Xiao, C. Xiao, Appl. Surf. Sci. 254, 6432 (2008)

    Article  ADS  Google Scholar 

  8. S. Kim, R. Sharma, B. Kim, H. Yang, K. Kyhm, J. Phys. D, Appl. Phys. 42, 095403 (2009)

    Article  ADS  Google Scholar 

  9. J. Yang, J.J. Peng, R. Zou, F. Peng, H. Wang, H. Yu, J.Y. Lee, Nanotechnology 19, 255603 (2008)

    Article  ADS  Google Scholar 

  10. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)

    Article  ADS  Google Scholar 

  11. M. Zalewska, S. Mahlik, B.K. Ski, M. Grinberg, A.M. Kłonkowski, Opt. Mater. 30, 719 (2008)

    Article  ADS  Google Scholar 

  12. Z. Ren, H. Yang, L. Shen, S.D. Han, J. Mater. Sci., Mater. Electron. 19, 1 (2008)

    Article  Google Scholar 

  13. S.V. Pol, V.G. Pol, J.M.C. Moreno, S. Cheylan, A. Gedanken, Langmuir 24, 10462 (2008)

    Article  Google Scholar 

  14. F.V. Mikulec, M. Kuno, M. Bennati, D.A. Hall, R.G. Griffin, M.G. Bawendi, J. Am. Chem. Soc. 122, 2532 (2000)

    Article  Google Scholar 

  15. S. Yilmaz, H. Safak, Physica E 36, 40 (2007)

    Article  ADS  Google Scholar 

  16. J.C. Howk, K.R. Sembach, K.C. Roth, J.W. Kruk, Astrophys. J. 544, 867 (2000)

    Article  ADS  Google Scholar 

  17. K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, Solid State Commun. 135, 16 (2005)

    Article  ADS  Google Scholar 

  18. R.N. Bhargava, D. Gallager, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)

    Article  ADS  Google Scholar 

  19. A.A. Bol, A. Meijerink, Phys. Rev. B 58, R15997 (1998)

    Article  ADS  Google Scholar 

  20. N. Murase, R. Jaganathan, Y. Kanemastu, M. Watanabe, A. Kurita, K. Hirata, T. Yazama, T. Kushida, J. Phys. Chem. B 103, 754 (1999)

    Article  Google Scholar 

  21. B.A. Smith, J.Z. Zhang, A. Joly, J. Liu, Phys. Rev. B 62, 2021 (2000)

    Article  ADS  Google Scholar 

  22. S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sharma, J. Phys. Chem. B 109, 1963 (2005)

    Article  Google Scholar 

  23. H.S. Bhatti, R. Sharma, N.K. Verma, N. Kumar, S.R. Vadera, K. Manzoor, J. Phys. D, Appl. Phys. 39, 1754 (2006)

    Article  ADS  Google Scholar 

  24. R. Sharma, H.S. Bhatti, Nanotechnology 18, 465703 (2007)

    Article  Google Scholar 

  25. K.H. Cheng, J. Aijmo, L. Ma, M. Yao, X. Zhang, J. Como, L.J. Hope-Weeks, J. Huang, W. Chen, J. Phys. Chem. C 112, 17931 (2008)

    Article  Google Scholar 

  26. P. Lommens, P.F. Smet, C.M. Donega, A. Meijerink, L. Piraux, S. Michotte, S.M. Tempfli, D. Poelman, Z. Hens, J. Luminesc. 118, 245 (2006)

    Article  ADS  Google Scholar 

  27. B.C. Lu, J. Gao, Y. Fu, Y. Du, Y. Shi, Z. Su, Adv. Funct. Mater. 18, 1 (2008)

    Google Scholar 

  28. B. Karthikeyan, Chem. Phys. Lett. 432, 513 (2006)

    Article  ADS  Google Scholar 

  29. H.S. Bhatti, A. Gupta, N.K. Verma, S. Kumar, J. Mater. Sci., Mater. Electron. 17, 281 (2006)

    Article  Google Scholar 

  30. N.Q. Huong, J.L. Birman, Phys. Rev. B 69, 085321 (2004)

    Article  ADS  Google Scholar 

  31. K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Appl. Phys. Lett. 84(2), 1 (2004)

    Article  Google Scholar 

  32. V.I. Klimov, Semiconductor and Metal Nanocrystals (Marcel Dekker, New York, 2004)

    Google Scholar 

  33. S.H. Yu, M. Yoshimura, Adv. Mater. 14, 296 (2002)

    Article  Google Scholar 

  34. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Phys. Rev. B 60, 9191 (1999)

    Article  ADS  Google Scholar 

  35. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  36. Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis, J.Q. Xiao, J. Am. Chem. Soc. 126, 6874 (2004)

    Article  Google Scholar 

  37. S. Sapra, R. Viswanatha, D.D. Sharma, J. Phys. D, Appl. Phys. 36, 1595 (2003)

    Article  ADS  Google Scholar 

  38. J.A. Jo, Q. Fang, T. Papaioannou, J. Biomed. Opt. 9, 743 (2004)

    Article  ADS  Google Scholar 

  39. P.H. Borse, N. Deshmukh, R.F. Sinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087 (1999)

    Article  Google Scholar 

  40. P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian, C.M. Lieber, Nano Lett. 5, 1407 (2005)

    Article  ADS  Google Scholar 

  41. R. Sharma, B. Kim, C. Cho, K. Kyhm, J. Phys. D, Appl. Phys. 42, 135421 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Bhatti, H.S. & Kyhm, K. Enhanced oscillator strengths and optical parameters of doped ZnS bulk and nanophosphors. Appl. Phys. B 97, 145–155 (2009). https://doi.org/10.1007/s00340-009-3632-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3632-7

PACS

Navigation