Skip to main content
Log in

3-pentanone fluorescence yield measurements and modeling at elevated temperatures and pressures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Measurements of 3-pentanone fluorescence quantum yield (FQY) over a wide range of temperatures and pressures in air and nitrogen bath gases are reported and a comprehensive FQY model in support of quantitative planar laser-induced fluorescence diagnostics at elevated pressures and temperatures is presented. Measurements were made of the FQY for 20 mbar of 3-pentanone in nitrogen and air for pressures between 1 and 25 bar in a high-pressure and high-temperature cell for excitation wavelengths of 248, 266, 277, and 308 nm. The measurements were performed in nitrogen from 298 to 745 K and in air from 298 to 567 K. The 3-pentanone FQY data were used to optimize FQY model parameters, including the oxygen and nitrogen quenching rates and vibrational relaxation cascade parameters for nitrogen and oxygen. This work introduces vibrational energy dependence for cascade parameters, as well as a nitrogen quenching rate. The new 3-pentanone FQY model agrees with the measurements within 10%, as well as with fluorescence signal measurements from optical internal combustion engines at pressures and temperatures up to 28 bar and 1100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. A. Lozano, B. Yip, R. Hanson, Exp. Fluids 13, 369 (1992)

    Article  Google Scholar 

  3. M. Thurber, F. Grisch, B. Kirby, M. Votsmeier, R. Hanson, Appl. Opt. 37, 4963 (1998)

    Article  ADS  Google Scholar 

  4. J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)

    Article  ADS  Google Scholar 

  5. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)

    Article  ADS  Google Scholar 

  6. D. Rothamer, J. Snyder, R. Hanson, R. Steeper, SAE Int. J. Fuels Lubr. 1, 520 (2009)

    Google Scholar 

  7. J.A. Snyder, R.K. Hanson, R.P. Fitzgerald, R.R. Steeper, SAE Int. J. Engines 2, 460 (2009)

    Google Scholar 

  8. D. Rothamer, J. Snyder, R. Hanson, R. Steeper, Appl. Phys. B, Lasers Opt. 99, 371 (2010)

    Article  ADS  Google Scholar 

  9. T. Fujikawa, Y. Hattori, K. Akihama, SAE Tech. Pap. Ser. 41, 972944 (1997)

    Google Scholar 

  10. F. Grossman, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249 (1996)

    Article  ADS  Google Scholar 

  11. V. Modica, C. Morin, P. Guibert, Appl. Phys. B 87, 193 (2007)

    Article  ADS  Google Scholar 

  12. A. Braeuer, F. Beyrau, A. Leipertz, Appl. Opt. 45, 4982 (2006)

    Article  ADS  Google Scholar 

  13. D.A. Rothamer, Ph.D. thesis, Stanford University, 2007

  14. J.A. Snyder, Appl. Opt. (2012), in progress

  15. J.A. Snyder, Ph.D. thesis, Stanford University, 2011

  16. W. Koban, J. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proc. Combust. Inst. 30, 1545 (2005)

    Article  Google Scholar 

  17. J.D. Koch, Ph.D. thesis, Stanford University, 2005

  18. B.H. Cheung, R.K. Hanson, Appl. Phys. B (2011). doi:10.1007/s00340-011-4817-4

  19. J. Koch, J. Gronki, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 109, 2037 (2008)

    Article  ADS  Google Scholar 

  20. J.D. Koch, R.K. Hanson, W. Koban, C. Schulz, Appl. Opt. 43, 5901 (2004)

    Article  ADS  Google Scholar 

  21. J. Troe, J. Chem. Phys. 66, 4758 (1977)

    Article  ADS  Google Scholar 

  22. G.B. Rieker, X. Liu, H. Li, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 87, 169 (2006)

    Article  ADS  Google Scholar 

  23. W.M. Nau, J.C. Scaiano, J. Phys. Chem. 100, 11360 (1996)

    Article  Google Scholar 

  24. R.G. Brown, D. Phillips, J. Chem. Soc. Faraday Trans. II 70, 630 (1974)

    Article  Google Scholar 

  25. G. Zalesskaya, A. Kuchinskii, J. Appl. Spectrosc. 75, 36 (2008)

    Article  ADS  Google Scholar 

  26. J.R. Lakowicz, B.R. Masters, J. Biomed. Opt. 13, 029901 (2008)

    Article  ADS  Google Scholar 

  27. H. Hippler, J. Troe, H.J. Wendelken, J. Chem. Phys. 78, 6709 (1983)

    Article  ADS  Google Scholar 

  28. H. Hippler, B. Otto, J. Troe, Ber. Bunsenges. Phys. Chem. 93, 428 (1989)

    Google Scholar 

  29. L.A. Miller, J.R. Barker, J. Chem. Phys. 105, 1383 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Air Force Office of Scientific Research (Aerospace, Chemical, and Material Sciences Directorate), with Dr. Julian Tishkoff as the technical monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, B.H., Hanson, R.K. 3-pentanone fluorescence yield measurements and modeling at elevated temperatures and pressures. Appl. Phys. B 106, 755–768 (2012). https://doi.org/10.1007/s00340-012-4901-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4901-4

Keywords

Navigation