Skip to main content
Log in

Molecular tagging velocimetry of NH fluorescence in a high-enthalpy rarefied gas flow

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a new type of molecular tagging velocimetry based on NH fluorescence was developed and validated for the velocity measurements of a high-enthalpy rarefied gas wind tunnel where the maximum flow velocity exceeds 6 km/s near the nozzle exit at 0.2 Pa. The feasibility of this technique using the short-lived NH fluorescence was demonstrated in the hypersonic rarefied gas flow with yielding velocity profiles at multiple downstream locations from the nozzle exit. The total uncertainty of the measured flow velocities was estimated to be less than 6% when the flow velocity is above 2000 m/s. For the new tagging technique, only a single laser and a single time-gated camera are required for velocity measurement, due to the existence of NH radicals in the arc-discharged N2 mixed with a small amount of H2. Therefore, the NH-MTV not only shows great promise for tagging in high-enthalpy rarefied gas of nitrogen or air flows without seeding, but also possesses high practicability and facility for velocity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Mori, T. Ishida, S. Hayashi, Y. Aoki, T. Niimi, A study on REMPI as a measurement technique for highly rarefied gas flows. JSME Int. J. Ser. B 43(3), 400–406 (2000)

    Article  ADS  Google Scholar 

  2. C. Dankert, R. Cattolica, W. Sellers, in New Trends in Instrumentation for Hypersonic Research, Local Measurement of Temperatures and Concentrations: A Review for Hypersonic Flows (Springer, Dordrecht, 1994), pp. 563–581

  3. R.J. Adrian, J. Westerweel, Particle Image Velocimetry. (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  4. S. Koike, H. Takahashi, K. Tanaka, M. Hirota, K. Takita, G. Masuya, Correction method for particle velocimetry data based on the Stokes drag law. AIAA J. 45(11), 2770–2777 (2007)

    Article  ADS  Google Scholar 

  5. R.B. Miles, W.R. Lempert, J.N. Forkey, Laser Rayleigh scattering. Meas. Sci. Technol. 12, R33–R51 (2001)

    Article  ADS  Google Scholar 

  6. M. Zimmermann, R.B. Miles, Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter. Appl. Phys. Lett. 37(10), 885–887 (1980)

    Article  ADS  Google Scholar 

  7. J.N. Forkey, N.D. Finkelstein, W.R. Lempert, R.B. Miles, Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements. AIAA J. 34(3), 442–448 (1996)

    Article  ADS  Google Scholar 

  8. L.R. Boedeker, Velocity measurement by H2O photolysis and laser-induced fluorescence of OH. Opt. Lett. 14(10), 473–475, (1989)

    Article  ADS  Google Scholar 

  9. R.B. Miles, W.R. Lempert, Quantitative flow visualization in unseeded flows. Annu. Rev. Fluid Mech. 29, 285–326 (1997)

    Article  ADS  Google Scholar 

  10. R.W. Pitz, T.M. Brown, S.P. Nandula, P.A. Skaggs, P.A. DeBarber, M.S. Brown, J. Segall, Unseeded velocity measurement by ozone tagging velocimetry. Opt. Lett. 21(10), 755–757 (1996)

    Article  ADS  Google Scholar 

  11. K. Teshima,, H. Nakatsuji, Visualization of Rarefied Gas Flows by a Laser Induced Fluorescence Method, Rarefied Gas Dynamics, ed. by H. Oguchi (University Tokyo Press, Tokyo, 1984), pp. 447–454

    Google Scholar 

  12. T. Niimi, T. Fujimoto, T. Ishida, K. Wakayama, Visualization of two-dimensional temperature field in the rarefied gas flow using I2-PLIF. J. Vis. Soc. Jpn. 13, 39–42 (1993) (in Japanese)

    Google Scholar 

  13. W.R. Lempert, N. Jiang, S. Sethuram, M. Samimy, Molecular tagging velocimetry measurements in supersonic microjets. AIAA J. 40(6), 1065–1070 (2002)

    Article  ADS  Google Scholar 

  14. B. Hiller, R.A. Booman, C. Hassa, R.K. Hanson, Velocity visualization in gas flows using laser-induced-fluorescence of biacetyl. Rev. Sci. Instrum. 55(12), 1964–1967, (1984)

    Article  ADS  Google Scholar 

  15. A.F.P. Houwing,, D.R. Smith, J.S. Fox, P.M. Danehy, N.R. Mudford, Laminar boundary layer separation at a fin-body junction in a hypersonic flow. Shock Waves 11(1), 31–42 (2001)

    Article  ADS  Google Scholar 

  16. P.M. Danehy, S. O’Byrne, A.F.P. Houwing, J.S. Fox, D.R. Smith, Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J. 41(2), 263–271 (2003)

    Article  ADS  Google Scholar 

  17. H. Si Hadj Mohand, A. Frezzotti, J.J. Brandner, C. Barrot, S. Colin, Molecular tagging velocimetry by direct phosphorescence in gas microflows: correction of Taylor dispersion. Exp. Therm. Fluid Sci. 83, 177–190 (2017)

    Article  Google Scholar 

  18. F. Samouda, S. Colin, C. Barrot, L. Baldas, J. Juergen, Brandner micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems. Microsyst. Technol. 21, 527–537 (2015)

    Article  Google Scholar 

  19. A. Frezzotti, H. Si Hadj Mohand, C. Barrot, S. Colin, Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis. Microfluid. Nanofluid. 19, 1335–1348 (2015)

    Article  Google Scholar 

  20. M. Ismailov, H. Schock, A. Fedewa, Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry. Exp. Fluids 41, 57–65 (2006)

    Article  Google Scholar 

  21. C. Orlemann, C. Schulz, J. Wolfrum, NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures. Chem. Phys. Lett. 307(1–2), 15–20, (1999)

    Article  ADS  Google Scholar 

  22. P. Barker, A. Thomas, H. Rubinsztein-Dunlop, P. Ljungberg, Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence. Spectrochim. Acta Part B 50(11), 1301–1310 (1995)

    Article  ADS  Google Scholar 

  23. H. Rubinsztein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, Y. Malmsten, Ionic strontium fluorescence as a method of flow tagging velocimetry. Exp. Fluids 30(1), 36–42 (2001)

    Article  Google Scholar 

  24. J.M. Ress, G. Laufer, R.H. Krauss, Laser ion time-of-flight velocity measurements using N2 + tracers. AIAA J. 33(2), 296–301 (1995)

    Article  ADS  Google Scholar 

  25. L.A. Ribarov, J.A. Wehrmeyer, F. Batliwala, R.W. Pitz, P.A. DeBarber, Ozone tagging velocimetry using narrowband excimer lasers. AIAA J. 37(6), 708–714 (1999)

    Article  ADS  Google Scholar 

  26. L.A. Ribarov, J.A. Wehrmeyer, R.W. Pitz, R.A. Yetter, Hydroxyl tagging velocimetry (HTV) in experimental airflows. Appl. Phys. B 74(2), 175–183 (2002)

    Article  ADS  Google Scholar 

  27. H. Huang, W. Pan, C. Wu, Energy fluctuations in a direct current plasma torch with inter-electrode inserts operated at reduced pressure. Plasma Chem. Plasma Process. 32, 65–74 (2012)

    Article  ADS  Google Scholar 

  28. H. Huang, W. Pan, Z. Guo, C. Wu, Instabilities in a non-transferred direct current plasma torch operated at reduced pressure. J. Phys. D 43, 085202 (2010)

    Article  ADS  Google Scholar 

  29. J. Tobai, T. Dreier, Measurement of relaxation times of NH in atmospheric pressure flames using picosecond pump-probe degenerate four-wave mixing. J. Mol. Struct. 480–481, 307–310 (1999)

    Article  Google Scholar 

  30. M.D. Smooke, R.A. Yetter, T.P. Parr, D.M. Hanson-Parr, Experimental and modeling studies of two-dimensional ammonium perchlorate diffusion flames. Proc. Combust. Inst. 28(1), 839–846 (2000)

    Article  Google Scholar 

  31. A. Noullez, G. Wallace, W. Lempert, R.B. Miles, U.J. Frisch, Transverse velocity increments in turbulent flow using the RELIEF technique. J. Fluid Mech. 339, 287–307 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Science Foundation of China (Grant No. 11672359). The authors acknowledge the assistance provided by C.L. Li, at the Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yu, X., Yan, H. et al. Molecular tagging velocimetry of NH fluorescence in a high-enthalpy rarefied gas flow. Appl. Phys. B 123, 122 (2017). https://doi.org/10.1007/s00340-017-6703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6703-1

Keywords

Navigation