Skip to main content
Log in

Optimized design of an all-optical XOR gate with high contrast ratio and ultra-compact dimensions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, an optimized structure for an all-optical XOR gate with high contrast ratio and extremely compact dimension is proposed based on a photonic crystal platform. The above structure employs silicon rods in a hexagonal lattice configuration. The design works purely on linear interference effect between the incoming light signals without utilizing any non-linear materials. To study the propagation of light within the structure and to generate the bandgap diagram, the Finite Difference Time Domain technique and Plane Wave Expansion methods are utilized. After optimization of the various design parameters, a contrast ratio of 31.76 dB is attained by the proposed structure along with a response time of 0.46 ps and a footprint of 42.24 μm2. The device can be operated in the C Band with optimum performance at 1550 nm, which is the telecommunication wavelength. The operating bit rate for the proposed structure is 2.17 Tbps. The all-optical XOR gate plays a crucial role as the building blocks of various sequential and combinational logic designs suitable for application in optical computing and telecommunication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. K. Goswami, H. Mondal, M. Sen, A review on all-optical logic adder: heading towards next-generation processor. Opt. Commun. 483, 126668 (2021)

    Article  Google Scholar 

  2. P. Singh et al., All-optical logic gates: designs, classification, and comparison. Adv. Opt. Technol. 1–13, 2014 (2014)

    Google Scholar 

  3. A. Mohebzadeh-Bahabady, S. Olyaee, Investigation of response time of small footprint photonic crystal AND logic gate. Optoelectron. Lett. 16(6), 477–480 (2020)

    Article  ADS  Google Scholar 

  4. J. Crowe, Introduction to digital electronics (Elsevier, Barrie Hayes-Gill, 1998)

    Google Scholar 

  5. Z. Qiang, W. Zhou, R.A. Soref, Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  ADS  Google Scholar 

  6. N. Nair, S. Kaur, H. Singh, All-optical ripple carry adder based on SOA-MZI configuration at 100 Gbps. Optik 231, 166325 (2021)

    Article  ADS  Google Scholar 

  7. M. Michael, B.E. Caroline, S.C. Xavier, M-ary DPSK coded binary to gray, BCD to gray, and octal to binary all-optical code converters based on SOA-MZI configuration at 500 Gb/s. Appl. Opt. 59(27), 8126–8135 (2020)

    Article  ADS  Google Scholar 

  8. S. Naghizade, S. Mohammadi, H. Khoshsima, Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates. J. Opt. Commun. 42(1), 31–41 (2021)

    Article  Google Scholar 

  9. Q. Liu, Z. Ouyang, C.J. Wu, C.P. Liu, J.C. Wang, All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express. 16(23), 18992–19000 (2008)

    Article  ADS  Google Scholar 

  10. D.E. Fouskidis, K.E. Zoiros, A. Hatziefremidis, Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–15 (2021)

    Article  Google Scholar 

  11. M. Moradi, M. Danaie, A.A. Orouji, Design of all- optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. (2019). https://doi.org/10.1007/s11082-019-1874-0

    Article  Google Scholar 

  12. A. Kotb, C. Guo, 100 Gb/s all-optical multifunctional AND, NOR, XOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt. Laser Technol. 137, 106828 (2021)

    Article  Google Scholar 

  13. W.B. Fraga, J.W.M. Menezes, M.G. da Silva, C.S. Sobrinho, A.S.B. Sombra, All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262(1), 32–37 (2006)

    Article  ADS  Google Scholar 

  14. V. Sharma, S. Singh, The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber. J. Comput. Electron. 20, 397–408 (2021)

    Article  Google Scholar 

  15. Fu. Yulan, Hu. Xiaoyong, Q. Gong, Silicon photonic crystal all-optical logic gates. Phys. Lett. A. 377(3–4), 329–333 (2013)

    Google Scholar 

  16. Y. Fu et al., All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012)

    Article  ADS  Google Scholar 

  17. K. Mukherjee, Design and analysis of all optical frequency encoded XOR and XNOR gate using quantum dot semiconductor optical amplifier-Mach Zehnder interferometer. Opt. Laser Technol. 140, 107043 (2021)

    Article  Google Scholar 

  18. K.E. Muthu, S. Selvendran, V. Keerthana et al., Design and analysis of a reconfigurable XOR/OR logic gate using 2D photonic crystals with low latency. Opt. Quant. Electron. (2020). https://doi.org/10.1007/s11082-020-02550-y

    Article  Google Scholar 

  19. P. Andalib, N. Granpayeh, All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B. 26, 10–16 (2009)

    Article  ADS  Google Scholar 

  20. A. Kumar, S. Medhekar, All optical NOT and NOR gates using interference in the structures based on 2D linear photonic crystal ring resonator. Optik 179, 237–243 (2019)

    Article  ADS  Google Scholar 

  21. G. Calò, V. Petruzzelli, Compact design of photonic crystal ring resonator 2×2 routers as building blocks for photonic networks on chip. J. Opt. Soc. Am. B. 31, 517–525 (2014)

    Article  ADS  Google Scholar 

  22. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998)

    Article  ADS  Google Scholar 

  23. H.M. Hussein, T.A. Ali, N.H. Rafat, A review on the techniques for building all-optical photonic crystal logic gates. Opt. Laser Technol. 106, 385–397 (2018)

    Article  ADS  Google Scholar 

  24. A. Salmanpour, S. Mohammadnejad, A. Bahrami, Photonic crystal logic gates: an overview. Opt. Quant. Electron. 47, 2249–2275 (2015)

    Article  Google Scholar 

  25. M. Zhang, L. Wang, P. Ye, All optical XOR logic gates: technologies and experiment demonstrations. IEEE Commun. Mag. 43(5), S19–S24 (2005)

    Article  Google Scholar 

  26. S. Olyaee et al., Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt Quant Electron. 50(385), 1–12 (2018)

    Google Scholar 

  27. H. Wang, Y. Xiaoyan, X. Rong, and Xianwei Rong All-optical AND, XOR, and NOT logic gates based on Y-branch photonic crystal waveguide. Opt Eng (2015). https://doi.org/10.1117/1.OE.54.7.077101

    Article  Google Scholar 

  28. H. Vahed, F.C. Ghadimi, Simple design of all-optical AND, OR, NOT, and XOR logic gates in silicon-on-insulator photonic crystal. Opt. Eng. (2020). https://doi.org/10.1117/1.OE.59.2.027108

    Article  Google Scholar 

  29. D.G.S. Rao, S. Swarnakar, V. Palacharla et al., Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 41, 109–118 (2021)

    Article  Google Scholar 

  30. S.E. Kordi, R. Yousefi, S.S. Ghoreishi, H. Adrang, All-optical OR, NOT and XOR gates based on linear photonic crystal with high port-to-port isolation. Appl. Phys. B. 126(169), 1–12 (2020)

    Google Scholar 

  31. A. Safinezhad, H.B. Ghoushji, M. Shiri, M.H. Rezaei, High performance and ultrafast configurable all-optical photonic crystal logic gates based on interference effects. Opt. Quant. Electron. 53(259), 1–20 (2021)

    Google Scholar 

  32. E. G. Anagha, R. K. Jeyachitra, A new configuration for the realization of reconfigurable and power efficient all-optical XOR and NOT gate, 2020. In: 7th international conference on signal processing and integrated networks (SPIN), 10–15 (2020)

  33. E.H. Shaik, N. Rangaswamy, Interference based all-optical photonic crystal logic gates, advances in photonic crystals and devices, 1st edn. (CRC Press, Boca Raton, 2019)

    Google Scholar 

  34. I.A. Sukhoivanov, I.V. Guryev, Photonic crystals: physics and practical modeling (Springer, Berlin, 2009)

    Book  Google Scholar 

  35. N.M. Dsouza, V. Mathew, Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Article  ADS  Google Scholar 

  36. S. Damodaran, T. Shankar, R. Anbazhagan, All optical clocked D flip flop for 1.72 Tb/s optical computing. Microelectron. J. 103, 104865 (2020)

    Article  Google Scholar 

  37. Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284(14), 3528 (2011)

    Article  ADS  Google Scholar 

  38. P. Sharma, V.D. Kumar, All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon. Technol. Lett. 30(10), 959–962 (2018)

    Article  ADS  Google Scholar 

  39. A. Mohebzadeh-Bahabady, S. Olyaee, All-optical NOT and XOR logic gates using photonic crystal nano resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Article  Google Scholar 

  40. P. Rani, Y. Kalra, R.K. Sinha, Design of all optical logic gates in photonic crystal waveguides. Optik 126(9), 950–955 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed for the preparation of the manuscript.

Corresponding author

Correspondence to R. K. Jeyachitra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagha, E.G., Jeyachitra, R.K. Optimized design of an all-optical XOR gate with high contrast ratio and ultra-compact dimensions. Appl. Phys. B 128, 21 (2022). https://doi.org/10.1007/s00340-021-07747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07747-x

Navigation