Skip to main content

Advertisement

Log in

Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone

  • N:P Ratios, Nutrient Loads and Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the “Redfield ratio”, and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolf J E, Bachvaroff T, Place A R. 2008. Cryptophyte abundance drives blooms of mixotrophic harmful algae: A hypothesis based on Karlodinium veneficum as a model system. Harmful Algae, 8: 119–128.

    Article  Google Scholar 

  • Andersen J M. 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Archiv. fur Hydrobiologia, 74: 528–550.

    Google Scholar 

  • Anderson D M. 1989. Toxic algal bloom and red tides: a global perspective. In: Okaichi T, Anderson D M, Nemoto T eds. Red Tides: Biology, Environmental Science and Technology. Elsevier. p.11–16.

  • Anderson D A, Burkholder J M, Cochlan W P, Glibert P M, Gobler C, Heil C, Kudela R, Parsons M T, Trainer V, Vargo G. 2008. Harmful algal blooms in the United States: Linkages to eutrophication. Harmful Algae, 8: 39–53.

    Article  Google Scholar 

  • Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries, 25: 562–584.

    Article  Google Scholar 

  • Armstrong-Howard M D, Cochlan W P, Ladizinsky N, Kudela R M. 2007. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae, 6: 206–217.

    Article  Google Scholar 

  • Bailey E M, Owens M, Boynton W R, Cornwell J C, Kiss E, Smail P W, Soulen H, Buck E, Ceballos M. 2006. Sediment Phosphorus Flux: pH Interactions in the Tidal Freshwater Potomac River Estuary, Final Report. Technical Report Series. No.TS-505-06-CBL Ref. No. [UMCES] CBL06-005 of the University of Maryland Center for Environmental Science.

  • Berg G M, Balode M, Purina I, Bekere S, Bechemin C, Maestrini S Y. 2003. Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aq. Microb. Ecol., 30: 263–274.

    Article  Google Scholar 

  • Berg G M, Glibert P M, Lomas M W, Burford M. 1997. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol., 129: 377–387.

    Article  Google Scholar 

  • Berg G M, Repeta D J, LaRoche J. 2002. Dissolved organic nitrogen hydrolysis rates in axenic cultures of Aureococcus anophagefferens (Pelagophyceae): Comparison with heterotrophic bacteria. Appl. Environ. Microbiol., 68: 401–404.

    Article  Google Scholar 

  • Berman T. 2001. The role of DON and the effect of N:P ratios on occurrence of cyanobacterial blooms: Implications from the outgrowth of Aphanizomenon in Lake Kinneret. Limnol. Oceanogr., 46: 443–447.

    Article  Google Scholar 

  • Bouwman A F, Beusen A H W, Billen G. 2009. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochemical Cycles, 23: GB0A04, doi:10.1029/2009GB003576.

    Article  Google Scholar 

  • Boyer J N, Fourqurean J W, Jones R D. 1999. Seasonal and long-term trends in the water quality of Florida Bay (1989–1997). Estuaries, 22: 417–430.

    Article  Google Scholar 

  • Boyer G L, Sullivan J J, Anderson R J, Harrison P J, Taylor F J R. 1987. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol., 96: 123–128.

    Article  Google Scholar 

  • Burkholder J M. 2002. Cyanobacteria. In: Bitton G ed. Encyclopedia of Environmental Microbiology. Wiley Publishers, New York. p.952–982.

    Google Scholar 

  • Burkholder J M, Dickey D A, Kinder C, Reed R E, Mallin M A, Melia G, McIver M R, Cahoon L B, Brownie C, Deamer N, Springer J, Glasgow H Jr, Toms D, Smith J. 2006. Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: A decadal study of anthropogenic and climatic influences. Limnol. Oceanogr., 51: 463–487.

    Article  Google Scholar 

  • Burkholder J M, Glasgow H B. 1997. Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: behavior, impacts and environmental controls. Limnol. Oceanogr., 42: 1 052–1 075.

    Article  Google Scholar 

  • Burkholder J M, Glasgow H B Jr, Deamer-Melia N J. 2001b. Overview and present status of the toxic Pfiesteria complex. Phycologia, 40: 186–214.

    Article  Google Scholar 

  • Burkholder J M, Glibert P M, Skelton H. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8(1): 77–93.

    Article  Google Scholar 

  • Burkholder J M, Mallin M A, Glasgow H B, Larsen L M, McIver M R, Shank G C, Deamer-Melia N, Briley D S, Springer J, Touchette B W, Hannon E K. 1997. Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon. J. Environ. Quality, 26: 1 451–1 466.

    Article  Google Scholar 

  • Chróst R J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst R J ed. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag. p.29–59.

    Google Scholar 

  • Cloern J E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser., 210: 223–253.

    Article  Google Scholar 

  • Cochlan W P, Herndon J, Kudela R M. 2008. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae, 8: 111–118.

    Article  Google Scholar 

  • Cochlan W P, Herndon J, Ladizinsky N L, Kudela R M. 2005. Nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis. GEOHAB Open Science Meeting: HABs and Eutrophication, Baltimore, MD, USA.

    Google Scholar 

  • Collos Y, Gagne C, Laabir M, Vaquer A, Cecchi P, Souchu P. 2004. Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau lagoon, southern France. J. Phycol., 40: 96–103.

    Article  Google Scholar 

  • Costanza J K, Marcinko S E, Goewer A E, Mitchell C E. 2008. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA. Sci. Total Environ., 398: 76–86.

    Article  Google Scholar 

  • Cotner J B, Sada R H, Bootsma H, Johengen T, Cavaletto J F, Gardner W S. 2000. Nutrient limitation of heterotrophic bacteria in Florida Bay. Estuaries, 23: 611–620.

    Article  Google Scholar 

  • Dodds W K. 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J. N. Amer. Benthol. Soc., 22: 171–181.

    Article  Google Scholar 

  • Drake J C, Heaney S I. 1987. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol., 17: 513–23.

    Article  Google Scholar 

  • Dugdale R C, Wilkerson F P, Hogue V E, Marchi A. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar. Coast. Shelf Sci., 73: 17–29.

    Article  Google Scholar 

  • Dumont E, Harrison J H, Kroeze C, Bakker E J, Seitzinger S P. 2005. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochem. Cycles, 19: 1–14, doi:10.1029/2005GB002488.

    Article  Google Scholar 

  • Dyhrman S T. 2005. Ectoenzymes in Prorocentrum minimum. Harmful Algae, 4: 619–628.

    Article  Google Scholar 

  • Dyhrman S T, Ruttenberg K C. 2006. Presence and regulation of alkaline phosphatase in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr., 51: 1 381–1 390.

    Article  Google Scholar 

  • Finkel Z V, Beardall J, Flynn K J, Quiqq A, Rees T A, Raven J A. 2010. Phytoplankton in a changing world: Cells size and elemental stoichiometry. J. Plankt. Res., 32: 119–137.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). 2005. Current world fertilizer trends and outlook to 2009/2010. Rome. FAO Pubishers.

    Google Scholar 

  • Fisher T R, Peele E R, Ammerman J W, Harding L W Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82: 51–63.

    Article  Google Scholar 

  • Fistarol G O, Legrand C, Granéli E. 2003. Allelopathic effect of Prynesium parvum on a natural planktonc ommunity. Mar. Ecol. Prog. Ser., 255: 115–125.

    Article  Google Scholar 

  • Flynn K J. 2002. Modeling marine phytoplankton growth under eutrophic conditions. J. Sea Res., 54: 92–103.

    Article  Google Scholar 

  • Flynn K J. 2010. Do external resource ratios matter? Implications for modeling eutrophication events and controlling harmful algal blooms. J. Marine Systems, 83: 170–180.

    Article  Google Scholar 

  • Flynn K, Franco J M, Fernández P, Reguera B, Zepata M, Wood G, Flynn K J. 1994. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen and phosphorus stress. Mar. Ecol. Prog. Ser., 111: 99–109.

    Article  Google Scholar 

  • Galloway J N, Cowling E B. 2002. Nitrogen and the world. Ambio., 31: 64–71.

    Google Scholar 

  • Galloway J N, Cowling E B, Seitzinger S P, Socolow R H. 2002. Reactive nitrogen: Too much of a good thing? Ambio., 31: 60–63.

    Google Scholar 

  • Glibert P M. 2010. Long-term changes in nutrient loading and stoichiometry and their relationships with changes in the food web and dominant pelagic fish species in the San Francisco Estuary, California. Rev. Fish. Sci., 18(2): 211–232.

    Article  Google Scholar 

  • Glibert P M, Allen J I, Bouwman L, Brown C, Flynn K J, Lewitus A, Madden C. 2010a. Modeling of HABs and eutrophication: status, advances, challenges. J. Mar. Systems, 83: 262–275

    Article  Google Scholar 

  • Glibert P M, Anderson D A, Gentien P, Granéli E, Sellner K G. 2005a. The global, complex phenomena of harmful algal blooms. Oceanography, 18(2): 136–147.

    Google Scholar 

  • Glibert P M, Bronk D A. 1994. Release of dissolved organic nitrogen by the marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol., 60: 3 996–4 000.

    Google Scholar 

  • Glibert P M, Burkholder J M. 2006. The complex relationships between increasing fertilization of the Earth, coastal eutrophication, and HAB proliferation. In: Granéli E, Turner J eds. The Ecology of Harmful Algae. Springer-Verlag, New York, p.341–354.

    Chapter  Google Scholar 

  • Glibert P M, Burkholder J M, Kana T M, Alexander J A, Schiller C, Skelton H. 2009. Grazing by Karenia brevis on Synechococcus enhances their growth rate and may help to sustain blooms. Aquat. Microb. Ecol., 55: 17–30.

    Article  Google Scholar 

  • Glibert P M, Conley D J, Fisher T R, Harding L W Jr., Malone T C. 1995. Dynamics of the 1990 winter/spring bloom in Chesapeake Bay. Mar. Ecol. Prog. Ser., 122: 22–43.

    Article  Google Scholar 

  • Glibert P M, Harrison J, Heil C, Seitzinger S. 2006a. Escalating worldwide use of urea—a global change contributing to coastal eutrophication. Biogeochemistry, 77: 441–463.

    Article  Google Scholar 

  • Glibert P M, Heil C A, Hollander D, Revilla M, Hoare A, Alexander J, Murasko S. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Mar. Ecol. Prog. Ser., 280: 73–83.

    Article  Google Scholar 

  • Glibert P M, Heil C A, O’Neil J M, Dennison W C, O’Donohue M J H. 2006b. Nitrogen, phosphorus, silica and carbon in Moreton Bay, Queensland, Australia: Differential limitation of phytoplankton biomass and production. Estuaries and Coasts, 29: 107–119.

    Article  Google Scholar 

  • Glibert P M, Legrand C. 2006. The diverse nutrient strategies of HABs: Focus on osmotrophy. In: Granéli E, Turner J eds. Ecology of Harmful Algae. Springer. p.163–176.

  • Glibert P M, Magnien R, Lomas M W, Alexander J, Fan C, Haramoto E, Trice T M, Kana T M. 2001. Harmful algal blooms in the Chesapeake and Coastal Bays of Maryland, USA: Comparisons of 1997, 1998, and 1999 events. Estuaries, 24: 875–883.

    Article  Google Scholar 

  • Glibert P M, Seitzinger S, Heil CA, Burkholder J M, Parrow M W, Codispoti L A, Kelly V. 2005b. The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography, 18(2): 198–209.

    Google Scholar 

  • Glibert P M, Wazniak C E, Hall M, Sturgis B. 2007. Seasonal and interannual trends in nitrogen and brown tide in Maryland’s Coastal Bays. Ecol. Appl., 17(S): S79–S87.

    Article  Google Scholar 

  • Gobler C J, Lonsdale D J, Boyer G L. 2005. A synthesis and review of causes and impact of harmful brown tide blooms caused by the alga, Aureococcus anophagefferens. Estuaries, 28: 726–749.

    Article  Google Scholar 

  • Gobler C J, Renaghan M J, Buck N J. 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr., 47: 129–141.

    Article  Google Scholar 

  • Granéli E. 2005. Harmful algal blooms. In: Wassmann P, Olli K eds. Drainage Basin Inputs and Eutrophication: An Integrated Approach. University of Tromsø, Norway, p.99–112. www.ut.ee/~olli/eutr/.

    Google Scholar 

  • Granéli E, Anderson D M, Carlsson P, Maestrini S Y. 1997. Light and dark carbon uptake by Dinophysis species in comparison to other photosynthetic and heterotrophic dinoflagellates. Aquat. Microb. Ecol., 13: 177–186.

    Article  Google Scholar 

  • Granéli E, Carlsson P, Legrand C. 1999. The role of C, N and P in dissolved and particulate matter as a nutritional source for phytoplankton growth, including toxic species. Aquat. Ecol., 33: 17–27.

    Article  Google Scholar 

  • Granéli E, Flynn K. 2006. Chemical and physical factors influencing toxin content. In: Granéli E, Turner J T eds. Ecology of harmful algae. Springer. The Netherlands. p.229–241.

    Chapter  Google Scholar 

  • Granéli E, Johansson N, Panosso R. 1998. Cellular toxin contents in relation to nutrient conditions for different groups of phycotoxins. In: Reguera B, Blanco J, Fernandez M L, Wyatt T eds. Harmful Algae. Paris, France: Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO. p.321–324.

    Google Scholar 

  • Granéli E, Hansen P J. 2006. Allelopathy in harmful algae: A mechanism to compete for resources? In: Granéli E, Turner J T eds. Ecology of harmful algae. Springer. The Netherlands. p.189–201.

    Chapter  Google Scholar 

  • Granéli E, Turner J T eds. 2006. Ecology of Harmful Algae. Springer. The Netherlands.

    Google Scholar 

  • Hansen P J. 1998. Phagotrophic mechanisms and prey selection in mixotrophic phytoflagellates. In: Anderson D M, Cembella A D, Hallegraeff G M eds. Physiological Ecology of Harmful Algal Blooms. NATO ASI Series G41, Springer-Verlag, Berlin Heidelberg. p.525–537.

    Google Scholar 

  • Harris G P. 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, London.

    Google Scholar 

  • Harrison J A, Caraco N, Seitzinger S P. 2005a. Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochem. Cycles, 19: 1–16, doi:10.1029/2005GB002480.

    Google Scholar 

  • Harrison J A, Seitzinger S P, Bouwman A F, Caraco N F, Beusen A H W, Vörösmarty C J. 2005b. Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochem. Cycles, 19: 1–15, doi:10.1029/2004GB002357.

    Google Scholar 

  • Hecky R E, Kilham P. 1988. Nutrient limitation in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33: 796–822.

    Article  Google Scholar 

  • Heil C A, Revilla M, Glibert P M, Murasko S. 2007. Nutrient quality drives phytoplankton community composition on the West Florida Shelf. Limnol. Oceanogr., 52: 1 067–1 078.

    Article  Google Scholar 

  • Heil C A, Glibert P M, Murasko S, Alexander J S. 2009. Size-fractionated alkaline phosphatase activity along a gradient of nitrogen to phosphorus limitation in a carbonate dominated subtropical estuary. Contrib. Mar. Sci., 38: 37–48.

    Google Scholar 

  • Heisler J, Glibert P M, Burkholder J M, Anderson D A, Cochlan W P, Dennison W C, Dortch Q, Gobler C, Heil C A, Humphries E, Lewitus A, Magnien R, Marshall H, Sellner K, Stockwell D, Stoecker D, Suddleson M. 2008. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8: 3–13.

    Article  Google Scholar 

  • Herndon J, Cochlan W P. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae, 6: 260–270.

    Article  Google Scholar 

  • Hodgkiss I J. 2001. The N:P ratio revisited. In: Ho K C, Wang Z D eds. Prevention and Management of Harmful Algal Blooms in the South China Sea. School of Science and Technology, the Open University of Hong Kong.

  • Hodgkiss I J, Ho K C. 1997. Are changes in N:P ratios in coastal waters the key to increased red tide blooms? Hydrobiologia, 852: 141–147.

    Article  Google Scholar 

  • Howarth R W. 2008. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae, 8: 14–20.

    Article  Google Scholar 

  • Howarth R W, Ramakrishna K, Choi E, Elmgren R, Martinelli L, Mendoza A, Moomaw W, Palm C, Boy R, Scholes M, Z Z L. 2005. Nutrient management, responses assessment. In: Ecosystems and Human Well-being. Vol. 3, Policy Responses, the Millennium Ecosystem Assessment. Washington, DC: Island Press. p.295–311.

    Google Scholar 

  • Howarth R W, Sharpley A, Walker D. 2002. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries, 25: 656–676.

    Article  Google Scholar 

  • Huang B, Ou L, Wang X, Huo W, Li R, Hong H, Zhu M, Qi Y. 2007. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat. Microb. Ecol., 49: 195–206.

    Article  Google Scholar 

  • Irigoien X, Flynn K J, Harris R P. 2005. Phytoplankton blooms: a “loophole” in microzooplankton grazing impact? J. Plank. Res., 27: 313–321.

    Article  Google Scholar 

  • Jensen H S, Andersen F O. 1992. Importance of temperature, nitrate, and pH for phosphate release from sediments of four shallow, eutrophic lakes. Limnol. Oceanogr., 39: 577–589.

    Article  Google Scholar 

  • Jeong H J, Park J Y, Nho J H, Park M O, Ha J H, Seong K A, Jeng C, Seong C N, Lee K Y, Yih W H. 2005a. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol., 41: 131–143.

    Article  Google Scholar 

  • Jeong H J, Yoo Y D, Kim T H, Kim J H, Kang N S, Yih W H. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykikoides (Dinophyceae): prey species, the effects of prey concentration and grazing impact. J. Eukaryot. Microbiol., 51: 563–569.

    Article  Google Scholar 

  • Jeong H J, Yoo Y D, Kim J S, Seong K A, Kang N S, Kim T H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J., 45(2): 65–91.

    Article  Google Scholar 

  • Jeong H J, Yoo Y D, Park J Y, Song J Y, Kim S T, Lee S H, Kim K Y, Yih W H. 2005b. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol., 40: 133–150.

    Article  Google Scholar 

  • Jeong H J, Yoo Y D, Seong K A, Kim J H, Park J Y, Kim S, Lee S Y, Ha J H, Yih W H. 2005c. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol., 38: 249–257.

    Article  Google Scholar 

  • Ji X Q, Han X T, Zheng L, Yu Z M, Yang B J, Zou J Z. 2011. Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese J. Oceanology Limnol., This issue.

  • Johansson N, Granéli E. 1999a. Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar. Biol., 135: 209–217.

    Article  Google Scholar 

  • Johansson N, Granéli E. 1999b. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J. Exp. Mar. Biol. Ecol., 239: 243–258.

    Article  Google Scholar 

  • John E H, Flynn K J. 2002. Modelling changes in paralytic shellfish toxin content of dinoflagellates in response to nitrogen and phosphorus supply. Mar. Ecol. Prog. Ser., 225: 147–160.

    Article  Google Scholar 

  • Kana T M, Glibert P M. 1987. Effect of irradiances up to 2000 μE m−2 sec−1 on marine Synechococcus WH7803: I. Growth, pigmentation, and cell composition. Deep-Sea Res., 34: 479–495.

    Article  Google Scholar 

  • Karl D M, Björkman K M. 2001. Phosphorus cycle in seawater: Dissolved and particulate pool inventories and selected phosphorus fluxes. Methods in Microbiol., 30: 239–270.

    Article  Google Scholar 

  • Klausmeier C A, Litchman E, Daufresne T, Levin S A. 2004. Optimal N:P stoichiometry of phytoplankton. Nature, 429: 171–174.

    Article  Google Scholar 

  • Kudela R M, Cochlan W P. 2000. Nitrogen and carbon uptake kinetics and the influence of irradiance for a red bide bloom off southern California. Aquat. Microb. Ecol., 21: 31–47.

    Article  Google Scholar 

  • Kudela R M, Lane J Q, Cochlan W P. 2008. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae, 8(1): 103–110.

    Article  Google Scholar 

  • Legrand C, Rengefors K, Granéli E, Fistarol G O. 2003. Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia, 42: 406–419.

    Article  Google Scholar 

  • Lewitus A J. 2006. Osmotrophy in marine microalgae. In: Subba-Rao DV ed. Algal cultures, Analogues of blooms and applications. Science Publishers, Enfield, NH, USA. p.343–383.

    Google Scholar 

  • Lewitus A J, Burkholder J M, Glasgow H B Jr, Glibert P M, Willis B M, Hayes K C. 1999. Mixotrophy and nitrogen uptake by Pfiesteria piscicida (Dinophyceae). J. Phycol., 35: 1 430–1 437.

    Article  Google Scholar 

  • Li H, Veldhuis M J W, Post A F. 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser., 173: 107–115.

    Article  Google Scholar 

  • Li J, Glibert P M, Zhou M, Lu S, Lu D. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar. Ecol. Prog. Ser., 383: 11–26.

    Article  Google Scholar 

  • Lomas M W, Glibert P M, Berg G M, Burford M. 1996. Characterization of nitrogen uptake by natural populations of Aureococcus anophagefferens (Chrysophyceae) as a function of incubation duration, substrate concentration, light, and temperature. J. Phycol., 32: 907–916.

    Article  Google Scholar 

  • Lomas M W, Glibert P M, Clougherty D A, Huber D R, Jones J, Alexander J, Haramoto E. 2001. Elevated organic nutrient ratios associated with brown tide blooms of Aureococcus anophagefferens (Pelagophyceae). J. Plank. Res., 23: 1 339–1 344.

    Article  Google Scholar 

  • Lomas M W, Kana T M, MacIntyre H L, Cornwell J C, Nuzzi R, Waters R. 2004. Interannual variability of Aureococcus anophagefferens in Quantuck Bay, Long Island: natural test of the DON hypothesis. Harmful Algae, 3: 389–402.

    Article  Google Scholar 

  • Mallin M A. 2000. Impacts of industrial-scale swine and poultry production on rivers and estuaries. Amer. Scientist, 88: 26–37.

    Google Scholar 

  • Merrett M J. 1991. Inorganic carbon transport in some marine microalgal species. Can. J. Bot., 69: 1 032–1 039.

    Article  Google Scholar 

  • Miller A G, Espie G S, Canvin D T. 1991. Active CO2 transport in cyanobacteria. Can. J. Bot., 69: 925–935.

    Article  Google Scholar 

  • Mitra A, Flynn K J. 2006. Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett., 2: 194–197.

    Article  Google Scholar 

  • Mulholland M R, Bernhardt P W, Heil C A, Bronk D A, O’Neil J M. 2006. Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol. Oceanogr., 51: 1 762–1 776.

    Article  Google Scholar 

  • Mulholland M R, Glibert P M, Berg G M, Van Heukelem L, Pantoja S, Lee C. 1998. Extracellular amino acid oxidation by phytoplankton and cyanobacteria: a cross-ecosystem comparison. Aq. Microb. Ecol., 15: 141–152.

    Article  Google Scholar 

  • Mulholland M R, Gobler C J, Lee C. 2002. Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnol. Oceanogr., 47: 1 094–1 108.

    Article  Google Scholar 

  • Mulholland M R, Heil C A, Bronk D A, O’Neil J M, Bernhardt P. 2004. Does nitrogen regeneration from the N2 fixing cynaobacteria Trichodesmium spp. fuel Karenia brevis blooms in the Gulf of Mexico? In: Steidinger K A, Landsberg J H, Tomas C R, Vargo G A eds. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO. p.47–49.

  • Mulholland M R, Lee C, Glibert P M. 2003. Extracellular enzyme activity and uptake of carbon and nitrogen along an estuarine nutrient and salinity gradient. Mar. Ecol. Prog. Ser., 258: 3–17.

    Article  Google Scholar 

  • Murrell M C, Lores E M. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J. Plankt. Res., 26: 371–382.

    Article  Google Scholar 

  • National Research Council (NRC). 2000. Clean Coastal Waters—Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC.

    Google Scholar 

  • Nygaard K, Tobiesen A. 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnol. Oceanogr., 38: 273–279.

    Article  Google Scholar 

  • Oh H M, Lee S J, Jang M H, Yoon B D. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Envir. Microbiol., 66: 176–179.

    Article  Google Scholar 

  • Oh H M, Lee S J, Kim J H, Kim H S, Yoon B D. 2001. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung Reservoir, Korea. Appl. Envir. Microbiol., 67: 1 484–1 489.

    Article  Google Scholar 

  • Paerl H W, Fulton R S, Moisander P H, Dyble J. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World, 1: 76–113.

    Google Scholar 

  • Palenik B, Morel F M M. 1990. Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Mar. Ecol. Prog. Ser., 59: 195–201.

    Article  Google Scholar 

  • Palenik B, Brahamsha B, Larimer F W, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen E E, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb E A, Waterbury J. 2003. The genome of a motile marine Synechococcus. Nature, 424: 1 037–1 042.

    Article  Google Scholar 

  • Parrow M W, Burkholder J M. 2003. Estuarine heterotrophic cryptoperidiniopsoids (Dinophyceae): Life cycle and culture studies. J. Phycol., 39: 678–696.

    Article  Google Scholar 

  • Price G D, Badger M R. 1991. Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can. J. Bot., 69: 963–973.

    Article  Google Scholar 

  • Ratti S, Giordano M, Morse D. 2007. CO2-concentrating mechanisms of the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophyceae, Gonyaulacales). J. Phycol., 43: 693–701.

    Article  Google Scholar 

  • Raven J A, Johnston A M. 1991. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol. Oceanogr., 36: 1 701–1 714.

    Article  Google Scholar 

  • Redfield A C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnstone Memorial Volume. Liverpool: University of Liverpool Press. p.176–192

    Google Scholar 

  • Redfield A C. 1958. The biological control of chemical factors in the environment. Amer. Scientist, 46: 205–221.

    Google Scholar 

  • Rhee G Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr., 23: 10–25.

    Article  Google Scholar 

  • Romdhane M S, Eilertsen H C, Yahia O K D, Yahia M N D. 1998. Toxic dinoflagellate blooms in Tunisian lagoons: Causes and consequences for aquaculture. In: Reguera B, Blance J, Fernandez M L, Wyatt T eds. Harmful Algae. Xunta de Galicia and the Intergovernmental Oceanographic Commission of United Nations Educational, Scientific and Cultural Organization, Paris, France. p.80–83.

    Google Scholar 

  • Rothenberger M A, Burkholder J M, Wentworth T. 2009. Multivariate analysis of phytoplankton and environmental factors in a eutrophic estuary. Limnol. Oceanogr., 54: 2 107–2 127.

    Article  Google Scholar 

  • Schindler D W. 1977. Evolution of phosphorus limitation in lakes. Science, 196: 260–262.

    Article  Google Scholar 

  • Seitzinger S P. 1991. The effect of pH on the release of phosphorus from Potomac Estuary sediments: Implications for blue-green algal blooms. Est. Coast. Shelf Sci., 33: 409–418.

    Article  Google Scholar 

  • Seitzinger S P, Harrison J A, Dumont E, Beusen A H W, Bouwman A F. 2005. Sources and delivery of carbon, nitrogen and phosphorous to the coastal zone: An overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochem. Cycles, 19: 9, doi:10.1029/2005GB002606, 1–11.

    Article  Google Scholar 

  • Seitzinger S P, Kroeze C. 1998. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem. Cycles, 12: 93–113.

    Article  Google Scholar 

  • Seitzinger S P, Kroeze C, Bouwman A F, Caraco N, Dentener F, Styles R V. 2002. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries, 25: 640–655.

    Article  Google Scholar 

  • Seitzinger S P, Mayorga E, Kroeze C, Bouwman A F, Beusen A H W, Billen G, Van Drecht G, Dumont E, Fekete B M, Garnier J, Harrison J, Wisser D, Wollheim W M. 2009. Global nutrient river export trajectories 1970–2050: A Millennium Ecosystem Assessment scenario analysis. Global Biogeochem. Cycles, 2009GB003587.

  • Seong K A, Jeong H J, Kim S, Kim G H, Kang J H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser., 322: 85–97.

    Article  Google Scholar 

  • Skelton H M, Parrow M W, Burkholder J M. 2006. Phosphatase activity in the heterotrophic dinoflagellate, Pfiesteria shumwayae (Dinophyceae). Harmful Algae, 5: 395–406.

    Article  Google Scholar 

  • Smayda T J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In: Granéli E, Sundstrom B, Edler L, Anderson DM eds, Toxic Marine Phytoplankton. Elsevier, New York. p.29–40.

    Google Scholar 

  • Smayda T J. 1997. Harmful phytoplankton blooms: their ecophysiology and general relevance. Limnol. Oceanogr., 42: 1 137–1 153.

    Google Scholar 

  • Smil V. 2001. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food. The MIT Press, Cambridge, United Kingdom.

    Google Scholar 

  • Smith V H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221: 669–671.

    Article  Google Scholar 

  • Smith V H. 1990. Nitrogen, phosphorus and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol. Oceanogr., 35: 1 852–1 859.

    Google Scholar 

  • Solomon C M, Collier J L, Berg G M, Glibert P M. 2010. Role of urea in microbes in aquatic systems: a biochemical and molecular review. Aquat. Microb. Ecol., 59: 67–88.

    Article  Google Scholar 

  • Stephens D W, Krebs J R. 1986. Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Stibor H, Sommer U. 2003. Mixotrophy of a photosynthetic flagellate viewed from an optimal foraging perspective. Protist., 154: 91–98.

    Article  Google Scholar 

  • Stoecker D. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol., 46: 397–401.

    Article  Google Scholar 

  • Stoecker D K, Gustafson D E Jr. 2003. Cell-surface proteolytic activity of photosynthetic dinoflagellates. Aquat. Microb. Ecol., 30: 175–183.

    Article  Google Scholar 

  • Stoecker D K, Tillmann U, Granéli E. 2006. Phagotrophy in harmful algae. In: Granéli E, Turner J T eds. Ecology of Harmful Algae. Springer-Verlag, Berlin. p.177–187.

    Chapter  Google Scholar 

  • Sterner R W, Elser J J. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tarran G A, Burkhill P H, Edwards E S, Woodward E M S. 1999. Phytoplankton community structure in the Arabian Sea during and after the SW monsoon 1994. Deep-Sea Res. II, 46: 655–676.

    Article  Google Scholar 

  • Tilman D. 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology, 58: 338–348.

    Article  Google Scholar 

  • Trainer V L, Le Eberhart B T, Wekell J C, Adams N G, Hanson L, Cox F, Dowell J. 2003. Paralytic shellfish toxins in Puget Sound, Washington. J. Shellfish Res., 22: 213–223.

    Google Scholar 

  • Uchida T. 1992. Alkaline phosphatase and nitrate reductase activities in Prorocentrum micans Ehrenberg. Bull. Plank. Soc. Japan, 38: 85–92.

    Google Scholar 

  • Uchida T. 2001. The role of cell contact in the life cycle of some dinoflagellate species. J. Plankt. Res., 23: 889–891.

    Article  Google Scholar 

  • Van de Waal D B, Tonk L, Van Donk E, Matthijs H C P, Visser P S, Huisman J. 2010. Climate change and the impact of C:N stoichiometry on toxin production by harmful cyanobacteria. 14th International Conference on Harmful Algae, Hersonissos-Crete, Greece, November 2010. Abstract.

  • Van de Waal D B, Verspagen J M, Lurling M, Van Donk E, Visser P M, Huisman J. 2009. The ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test of the carbon-nutrient balance hypothesis. Ecol. Lett., 12: 1 326–1 335.

    Google Scholar 

  • Van Drecht G, Bouwman A F, Harrison J, Knoop J M. 2009. Global nitrogen and phosphate in urban waste water for the period 1970–2050. Global Biogeochemical Cycles, 23: GB0A03, doi:10.1029/2009GB003458.

    Article  Google Scholar 

  • Van Mooey B A S, Fredricks H F, Pedler B E, Dyhrman S T, Karl D M, Koblizek M, Lomas M W, Mincer T J, Moore L R, Moutin T, Rappe M S, Webb E A. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 458: 69–72.

    Article  Google Scholar 

  • Van Nieuwenhuyse E. 2007. Response of summer chlorophyll concentration to reduced total phosphorus concentration in the Rhine River (Netherlands) and the Sacramento-San Joaquin Delta (California, USA). Can. J. Fish. Aq. Sciences, 64: 1 529–1 542.

    Google Scholar 

  • Walsh J, Steidinger K. 2001. Saharan dust and Florida red tides: the cyanophyte connection. J. Geophys. Res., 106: 11 597–11 612

    Article  Google Scholar 

  • Wassmann P. 2005. Cultural eutrophication: perspectives and prospects. In: Wassmann P, Olli K eds. Drainage Basin Inputs and Eutrophication: An Integrated Approach. University of Tromso, Norway. p.224–234. www.ut.ee/~olli/eutr/.

    Google Scholar 

  • Wetzel R G. 2001. Limnology, 3rd Edition. Academic Press, New York.

    Google Scholar 

  • Xie L Q, Xie P, Tang H J. 2003. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hypereutrophic, subtropical Chinese lake. Envir. Poll., 122: 391–399.

    Article  Google Scholar 

  • Zhou M J, Yan T, Zou J Z. 2003. Preliminary analyses of the characteristics of red tide areas in Changjiang River estuary and its adjacent sea. Chinese J. Appl. Ecol., 14: 1 031–1 038. (in Chinese with English abstract)

    Google Scholar 

  • Zillén L, Conley D J. 2010. Hypoxia and cyanobacterial blooms are not natural features of the Baltic Sea. Biogeosciences Discuss. 7: 1 783–1 812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Glibert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glibert, P.M., Burkholder, J.M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chin. J. Ocean. Limnol. 29, 724–738 (2011). https://doi.org/10.1007/s00343-011-0502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0502-z

Keyword

Navigation