Skip to main content

Advertisement

Log in

Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Accumulation of metals in both sediments and Phragmites australis organs was studied. Samples were collected from seven stations located in Anzali wetland, Iran. The samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that concentration of the studied metals (except As and Cd) were higher in sediments than in P. australis organs. Metal accumulation was found to be significantly (P <0.05) higher in roots than in above-ground organs of P. australis. The bioaccumulation factor (BAF) and the transfer factor (TF) also verified the highest rate of metal accumulation in roots and their reduced mobility from roots to the above-ground organs. Pearson correlation coefficient showed significant relationships between metal concentrations in sediments and those in plant organs. It should be pointed out that sediment and plant samples exhibited higher metal concentrations in eastern and central parts than in western and southern parts of the wetland. The mean concentrations of all studied elements (except for Fe, V and Al) were higher in these sediment samples than in the Earth’s crust and shale. High accumulation of metals in P. australis organs (roots and shoots) is indicative of their high bioavailability in sediments of the wetland. The correlation between metal concentrations in sediments and in P. australis indicates that plant organs are good bioindicators of metal pollution in sediments of Anzali wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah M A M, Mohamed A A. 2015. Assessment of heavy metals by sediment quality guideline in surficial sediments of Abu Qir Bay southeastern Mediterranean sea, Egypt. Environ. Earth Sci., 73(7): 3603–3609.

    Article  Google Scholar 

  • Allen S E. 1989. Chemical Analysis of Ecological Material. Blackwell Scientific Publications, Oxford. 368p.

    Google Scholar 

  • Arienzo M, Toscano F, Di Fraia M, Caputi L, Sordino P, Guida M, Aliberti F, Ferrara L. 2014. An assessment of contamination of the Fusaro Lagoon (Campania Province, southern Italy) by trace metals. Environ. Monit. Assess., 186(9): 5731–5747.

    Article  Google Scholar 

  • Bai J H, Xiao R, Zhao Q Q, Lu Q Q, Wang J J, Reddy K R. 2014. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime. PLoS One, 9(9): e107738, http://dx.doi.org/10.1371/journal.pone.0107738.

    Article  Google Scholar 

  • Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, Virzo De Santo A. 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut., 130 (2): 149–156.

    Article  Google Scholar 

  • Benavides M P, Gallego S M, Tomaro M L. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol., 17 (1): 21–34.

    Article  Google Scholar 

  • Bonanno G, Lo Giudice R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common Reed) and their potential use as contamination indicators. Ecol. Indic., 10 (3): 639–645.

    Article  Google Scholar 

  • Bonanno G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common Reed) and biomonitoring applications. Ecotoxicol. Environ. Saf., 74(4): 1057–1064.

    Article  Google Scholar 

  • Bonanno G. 2012. Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicol. Environ. Saf., 80: 20–27.

    Article  Google Scholar 

  • Calace N, Ciardullo S, Maria Petronio B, Pietrantonio M, Abbondanzi F, Campisi T, Cardellicchio N. 2005. Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J., 79 (1–2): 243–248.

    Article  Google Scholar 

  • Champan P M. 2007. Determining when contamination is pollution–weight of evidence determinations for sediments and effluents. Environ. Int., 33 (4): 492–501.

    Article  Google Scholar 

  • Chaney R L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. In: Bar-Yosef B, Barrow N J, Goldshimd J eds. Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin. p. 140–158.

    Chapter  Google Scholar 

  • Chatterjee J, Kumar P, Sharma P N, Tewari R K. 2015. Chromium toxicity induces oxidative stress in turnip. Indian J. Plant Physiol., http://dx.doi.org/10.1007/s40502-015-0163-6.

    Google Scholar 

  • Chester R, Hughes M J. 1967. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol., 2: 249–262.

    Article  Google Scholar 

  • Darvish Bastami K, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Darvish Bastami M. 2012. Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar. Pollut. Bull., 64(12): 2877–2884.

    Article  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral M T. 2010. Trace metals in river bed sediments: an assessment of their partitioning and bioavailability by using multivariate exploratory analysis. J. Environ. Manage., 91(12): 2471–2477.

    Article  Google Scholar 

  • Du Laing G, van de Moortel A M K, Moors W, de Grauwe P, Meers E, Tack F M G, Verloo M G. 2009. Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol. Eng., 35 (2): 310–318.

    Article  Google Scholar 

  • Eid E M, El-Sheikh M A, Alatar A A. 2012. Uptake of Ag, Co and Ni by the organs of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus and their potential use as contamination indicators. Open J. Mod. Hydrol., 2: 21–27.

    Article  Google Scholar 

  • Eid E M, Shaltout K H. 2014. Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecol. Eng., 73: 17–25.

    Article  Google Scholar 

  • Ganjali S, Tayebi L, Atabati H, Mortazavi S. 2014. Phragmites australis as a heavy metal bioindicator in the Anzali wetland of Iran. Toxicol. Environ. Chem., 96(9): 1428–1434, http://dx.doi.org/10.1080/02772248.2014.942310.

    Article  Google Scholar 

  • Gao H F, Bai J H, Xiao R, Liu P P, Jiang W, Wang J J. 2013. Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch. Environ. Res. Risk Assess., 27(1): 275–284, http://dx.doi.org/10.1007/s00477-012-0587-8.

    Article  Google Scholar 

  • Ghasemzadeh F, Yosefzadeh H, Arab-Zavar M H. 2008. Removing arsenic and antimony by Phragmites australis: rhizofiltration technology. J. Appl. Sci., 8(9): 1668–1675.

    Article  Google Scholar 

  • Gibbs R J. 1973. Mechanisms of trace metal transport in rivers. Science, 180 (4081): 71–73.

    Article  Google Scholar 

  • Gill M. 2014. Heavy metal stress in plants: a review. Int. J. Adv. Res., 2(6): 1043–1055.

    Google Scholar 

  • Goulet R R, Pick F R. 2001. Diel changes in iron concentrations in surface–flow constructed wetlands. Water Sci. Technol., 44 (11–12): 421–426.

    Google Scholar 

  • Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L. 2012. The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut., 223(4): 1723–1741.

    Article  Google Scholar 

  • Gupta M, Khan E. 2015. Mechanism of arsenic toxicity and tolerance in plants: role of silicon and signalling molecules. In: Tripathi B N, Müller M eds. Stress Responses in Plants. Springer International Publishing, Switzerland. p. 143–157, http://dx.doi.org/10.1007/978-3319-13368-3_6.

    Chapter  Google Scholar 

  • Hosseini Alhashemi A S, Karbassi A R, Hassanzadeh Kiabi B, Monavari S M, Nabavi S M B, Sekhavatjou M S. 2011. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Biol. Trace Elem. Res., 142 (3): 500–516.

    Article  Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M. 2013. Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ. Earth Sci., 70(4): 1791–1808.

    Article  Google Scholar 

  • JICA. 2004. The study on integrated management for ecosystem conservation of the Anzali wetland. Nippon Koei Co, Ltd., Tokyo.

    Google Scholar 

  • Kabata-Pendias A, Mukherjee A B. 2007. Trace Elements from Soil to Human. Springer, Berlin, Heidelberg.

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H. 2001. Trace Elements in Soils and Plants. CRC Press, Boca Raton, London.

    Google Scholar 

  • Karbassi A R, Monavari S M, Nabi Bidhendi Gh R, Nouri J, Nematpour K. 2008. Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess., 147 (1–3): 107–116.

    Article  Google Scholar 

  • Kopyra M, Gwóźdź E A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol and Biochem., 41(11–12): 1011–1017.

    Article  Google Scholar 

  • Kükrer S, Şeker S, Abacı Z T, Kutlu B. 2014. Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan, Turkey. Environ. Monit. Assess., 186(6): 3847–3857.

    Article  Google Scholar 

  • Lü D W, Zheng B, Fang Y, Shen G, Liu H J. 2015. Distribution and pollution assessment of trace metals in seawater and sediment in Laizhou Bay. Chin. J. Oceanol. Limnol., 33(4): 1053–1061, http://dx.doi.org/10.1007/s00343015-4226-3.

    Article  Google Scholar 

  • Lu Q Q, Bai J H, Gao Z Q, Zhao Q Q, Wang J J. 2014. Spatial and seasonal distribution and risk assessments for metals in a Tamarix Chinensis wetland, China. Wetlands., http://dx.doi.org/10.1007/s13157-014-0598-y.

    Google Scholar 

  • Malik N J, Chamon A S, Mondal M D, Elahi S F, Faiz S M A. 2011. Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). J. Bangladesh. Assoc. Young Res., 1 (1): 79–91.

    Article  Google Scholar 

  • Michalak A. 2006. Phenolic compounds and their Antioxidant activity in plants Growing under heavy metal stress. Polish J. Environ. Stud., 15 (4): 523–530.

    Google Scholar 

  • Miyasaka S C, Hue N V, Dunn M A. 2007. Aluminum. In: Barker AV, Pilbeam D J eds. Handbook of Plant Nutrition. CRC Press, Taylor and Francis Group, Boca Raton, FL. p.439–479.

    Google Scholar 

  • Moore F, Nematollahi M J, Keshavarzi B. 2015. Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environ. Monit. Assess., 187: 4117, http://dx.doi.org/10.1007/s10661-014-4117-7.

    Article  Google Scholar 

  • Morari F, Dal Ferro N, Cocco E. 2015. Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut., 226: 56.

    Article  Google Scholar 

  • Nasehi F, Hassani A H, Monavari M, Karbassi A R, Khorasani N. 2013. Evaluating the metallic pollution of riverine water and sediments: a case study of area river. Environ. Monit. Assess., 185 (1): 197–203.

    Article  Google Scholar 

  • Ontario Ministry of the Environment and Energy, Guideline for Use at Contaminated Sites in Ontario. 1998. Appendix 2, Table E, Sediment Quality Criteria Appendix. Revised September 1998, http://www.ene.gov.on.ca/envision/gp/3161e01_1.pdfH1997.

    Google Scholar 

  • Pandey N, Sharma C P. 2009. Effect of heavy metals Co 2+, Ni 2+ and Cd2+on growth and metabolism of cabbage. Plant Sci., 163 (4): 753–758.

    Article  Google Scholar 

  • Pbugmacher S, Geissler K, Steinberg C. 1999. Activity of phase I and phase II detoxication enzymes in different cormus parts of Phragmites australis. Ecotoxicol. Environ. Saf., 42 (1): 62–66.

    Article  Google Scholar 

  • Piva F, Ciaprini F, Onorati F, Benedetti M, Fattorini D, Ausili A, Regoli F. 2011. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere, 83 (4): 475–485.

    Article  Google Scholar 

  • Roos M S. 1994. Sources and forms of potentially toxic metals in soil-plant systems. In: Roos M S ed. Toxic Metals in Soil-Plant Systems. John Wiley, Chichester. p. 3–25.

    Google Scholar 

  • Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B. 2014. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit. Assess., 186(5): 3199–3212.

    Article  Google Scholar 

  • Sasmaz A, Obek E, Hasar H. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol. Eng., 33 (3–4): 278–284.

    Article  Google Scholar 

  • Srivastava J, Kalra S J S, Naraian R. 2014. Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl. Water Sci., 4 (3): 193–202.

    Article  Google Scholar 

  • Suárez-Serrano A, Alcaraz C, Ibáñez C, Trobajo R, Barata C. 2010. Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicol. Environ. Saf., 73 (3): 280–286.

    Article  Google Scholar 

  • Tessier A, Campell P G C, Bisson M. 1979. Sequential extraction procedure for the Speciation of particulate trace metals. Anal. Chem., 51 (7): 844–851.

    Article  Google Scholar 

  • U. S. EPA3050. 1996. Acid Digestion of Sediments, Sludges and Soils; Method 3050B. Environmental Protection Agency, USA.

    Google Scholar 

  • Vesali Naseh M R, Karbassi A R, Ghazaban F, Baghvand A. 2012. Evaluation of heavy metal pollution in Anzali wetland, Guilan, Iran. Iran. J. Toxicol., 5 (15): 565–576.

    Google Scholar 

  • Wang J J, Bai J H, Gao Z Q, Lu Q Q, Zhao Q Q. 2015. Soil as levels and bioaccumulation in Suaeda salsa and Phragmites australis wetlands of the Yellow River Estuary, China. BioMed Res. Int., 2015: 301898, http://dx.doi.org/10.1155/2015/301898.

    Google Scholar 

  • Wang Z X, Yao L, Liu G H, Liu W Z. 2014. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf., 107: 200–206.

    Article  Google Scholar 

  • Xiao R, Bai J H, Huang L B, Zhang H G, Cui B S, Liu X H. 2013. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22(10): 1564–1575.

    Article  Google Scholar 

  • Xiao R, Bai J H, Lu Q Q, Zhao Q Q, Gao Z Q, Wen X J, Liu X H. 2015. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100year chronosequence of reclamation in an estuary of China. Sci. Total Environ., 517: 66–75.

    Article  Google Scholar 

  • Zamani Hargalani F, Karbassi A, Monavari S M, Abroomand Azar P. 2013. A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environ. Monit. Assess., 186(4): 2329–2348, http://dx.doi.org/10.1007/s10661-013-3541-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Karbassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilzadeh, M., Karbassi, A. & Moattar, F. Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chin. J. Ocean. Limnol. 34, 810–820 (2016). https://doi.org/10.1007/s00343-016-5128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5128-8

Keywords

Navigation