Skip to main content
Log in

Influence of Hydration and Temperature on the Rheological Properties of Plant Cuticles and Their Impact on Plant Organ Integrity

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The rheological properties of enzymatically isolated plant cuticular membranes (CM) of mature leaves of Yucca aloifolia L., Hedera helix L., Nerium oleander L., and Lycopersicon esculentum Mill. fruit were analyzed in a transient load-creep test. Cuticular membrane samples were tested dry and hydrated as submerged in distilled water. Apparent plastic extensibility turned out as delayed elastic extensibility, that is, CM showed visco-elastic behavior, if the system had sufficient time (up to 24 h) for relaxation. Both extensibility and the apparent plastic component increased in the hydrated state. In addition to hydration, different temperature regimes ranging from 7° to 30°C were established during testing to evaluate temperature sensitivity of cuticular rheology. Temperature-dependent changes of the rheological properties as small as 1°C could be detected. Extensibility was correlated with neither the thickness of the cuticles nor the specific structure of the cuticles as determined by scanning electron microscopy (SEM) and digital image analysis. For tomato fruit, no significant differences in extension behavior could be detected between CM and fruit skins, including the cell wall proper as analyzed in hydrated condition. The results demonstrate that the cuticle is a flexible biopolymer with rheological properties that can be dynamically modified by both hydration and temperature. The cuticle appears to have a pronounced impact on the overall mechanical behavior of the tomato fruit, implying a substantial contribution to the mechanical integrity of the whole organ. The described rheological properties of the tomato fruit CM are important features to accommodate growth processes without the loss of physiological integrity, but they may also help to understand fruit cracking as affected by hydration and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Adams SR, Cockshull KE, Cave CRJ. 2001. Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Article  Google Scholar 

  • J Andrews SR Adams KS Burton RN Edmondson (2002) ArticleTitlePartial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin J Exp Bot 53 2393–2399 Occurrence Handle1:CAS:528:DC%2BD3sXhtVKhuw%3D%3D Occurrence Handle10.1093/jxb/erf109 Occurrence Handle12432031

    Article  CAS  PubMed  Google Scholar 

  • Baker EA, Bukovac MJ, Hunt GM. 1982. Composition of tomato fruit cuticle as related to fruit growth and development. In: Cutler DF, Alvin KL, Price CE (editors), The plant cuticle, Academic Press, London, UK, p 33–44

    Google Scholar 

  • Balsamo RA, Bauer AM, Davis SD, Rice BM. 2003. Leaf biomechanics, morphology, and anatomy of the deciduous mesophyte Prunus serrulata (Rosaceae) and the evergreen sclerophyllous shrub Heteromeles arbutifolia (Rosaceae). Am J Bot 90:72–77

    Article  PubMed  Google Scholar 

  • Bargel H, Barthlott W, Koch K, Schreiber L, Neinhuis C. 2004. Plant cuticles: multifunctional interfaces between plant and environment. In: Hemsley AR, Poole I (editors), The evolution of plant physiology, Elsevier Academic Press, London, UK, p 171–194

    Chapter  Google Scholar 

  • H Bargel C Neinhuis (2004) ArticleTitleAltered tomato (Lycopersicon esculentum Mill.) fruit cuticle biomechanics of a pleiotropic non-ripening mutant J Plant Growth Regul 23 61–75 Occurrence Handle1:CAS:528:DC%2BD2MXivVaitLc%3D Occurrence Handle10.1007/s00344-004-0036-0

    Article  CAS  Google Scholar 

  • H Bargel C Neinhuis (2005) ArticleTitleBiomechanical properties of tomato (Lycopersicon esculentum Mill.) fruit skin and isolated cuticle during fruit growth and ripening J Exp Bot 56 1049–1060 Occurrence Handle1:CAS:528:DC%2BD2MXit1Knu7o%3D Occurrence Handle10.1093/jxb/eri098 Occurrence Handle15710631

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I. 1998. Classification and terminology of plant epicuticular waxes. J Linn Soc 126:137–260

    Google Scholar 

  • N Bertin S Guichard C Leonardi JJ Longuenesse D Langlois (2000) ArticleTitleSeasonal evolution of the quality of fresh glasshouse tomatoes under Mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load Ann Bot 85 741–750 Occurrence Handle10.1006/anbo.2000.1123

    Article  Google Scholar 

  • Chamel A, Pineri M, Escoubes M. 1991. Quantitative determination of water sorption by plant cuticles. Plant Cell Environ 14:87–95

    Article  Google Scholar 

  • E Chaumat A Chamel (1991) ArticleTitleSorption and permeation to phenylurea herbicids of isolated cuticles of fruits and leaves. Effects of cuticular characteristics and climatic parameters Chemosphere 22 85–97 Occurrence Handle1:CAS:528:DyaK3MXitVWltLc%3D Occurrence Handle10.1016/0045-6535(91)90267-H

    Article  CAS  Google Scholar 

  • E Dominguez A Heredia (1999) ArticleTitleWater hydration in cutinized cell walls: a physico-chemical analysis Biochim Biophys Acta 1426 168–176 Occurrence Handle1:CAS:528:DyaK1MXhsVWnuw%3D%3D Occurrence Handle10.1016/S0304-4165(98)00152-4 Occurrence Handle9878721

    Article  CAS  PubMed  Google Scholar 

  • AD Drozdov (2001) ArticleTitleThe effects of temperature and molecular weight on the mechanical response and strenght of elastomers Polymer Bull 46 215–222 Occurrence Handle1:CAS:528:DC%2BD3MXjvFGnt7g%3D Occurrence Handle10.1007/s002890170077

    Article  CAS  Google Scholar 

  • K Eckl H Gruler (1980) ArticleTitlePhase transitions in plant cuticles Planta 150 102–113 Occurrence Handle1:CAS:528:DyaL3MXitFKm Occurrence Handle10.1007/BF00582352 Occurrence Handle24306583

    Article  CAS  PubMed  Google Scholar 

  • Edelmann HG. 1995. Water potential modulates extensibility of rye coleoptile cell walls. Bot Acta 108:374–380

    Article  CAS  Google Scholar 

  • HG Edelmann K Köhler (1995) ArticleTitleAuxin increases elastic wall-properties in rye coleoptiles: implications for the mechanism of wall loosening Physiol Plant 93 85–92 Occurrence Handle1:CAS:528:DyaK2MXivFOhs78%3D Occurrence Handle10.1034/j.1399-3054.1995.930113.x

    Article  CAS  Google Scholar 

  • Emmons CLW, Scott JW. 1997. Environmental and physiological effects on cuticle cracking in tomato. J Amer Soc Hort Sci 122:797–801

    Google Scholar 

  • RL Fischer AB Bennett (1991) ArticleTitleRole of cell wall hydrolases in fruit ripening Annu Rev Plant Physiol Plant Mol Biol 42 675–703 Occurrence Handle1:CAS:528:DyaK3MXltFSms7c%3D Occurrence Handle10.1146/annurev.pp.42.060191.003331

    Article  CAS  Google Scholar 

  • Graca J, Schreiber L, Rodrigues J, Pereira H. 2002. Glycerol and glyceryl esters of omega-hydroxyacids in cutins. Phytochemistry 61:20–215

    Article  Google Scholar 

  • KH Hasenstein TC Pescareta VI Sullivan (1993) ArticleTitleThigmonasticity of thistle staminal filaments II. Mechano-elastic properties Planta 190 5–64 Occurrence Handle10.1007/BF00195675

    Article  Google Scholar 

  • Heredia A. 2003. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta 1620:–7

  • Holloway PJ, Brown GA. 1981. Ultrahistochemical detection of epoxides in plant cuticular membranes. J Exp Bot 32:105–1066

    Article  Google Scholar 

  • Jeffree CE. 1986. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood SR (editors), Insects and the plant surface, Edward Arnold, London, UK, p 23–63

    Google Scholar 

  • Jeffree CE. 1996. Structure and ontogeny of plant cuticles. In: Kerstiens G (editor), Plant cuticles: an integrated functional approach, Bios Scientific, Oxford, p 33–82

    Google Scholar 

  • MA Jenks AM Rashotte HA Tuttle KA Feldmann (1996) ArticleTitleMutants in Arabidopsis thaliana altered in epicuticular wax and leaf morphology Plant Physiol 110 377–385 Occurrence Handle1:CAS:528:DyaK28XhtF2nurg%3D Occurrence Handle10.1104/pp.110.2.377 Occurrence Handle12226189 Occurrence Handle157730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolattukudy PE. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • U Kutschera P Schopfer (1986) ArticleTitleEffect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles Planta 167 527–535 Occurrence Handle1:CAS:528:DyaL28Xit1aisrk%3D Occurrence Handle10.1007/BF00391229 Occurrence Handle24240369

    Article  CAS  PubMed  Google Scholar 

  • SJ Lolle GP Berlyn EM Engstrom KA Krolikowski WD, and others Reiter (1997) ArticleTitleDevelopmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle Dev Biol 189 311–321 Occurrence Handle1:CAS:528:DyaK2sXmsVGrt7Y%3D Occurrence Handle10.1006/dbio.1997.8671 Occurrence Handle9299123

    Article  CAS  PubMed  Google Scholar 

  • Luque P, Heredia A. 1997. The glassy state in isolated cuticles: differential scanning calorimetry of tomato fruit cuticular membranes. Plant Physiol Biochem 35:251–256

    CAS  Google Scholar 

  • Y Marechal A Chamel (1996) ArticleTitleWater in a biomembrane by infrared spectrometry J Phys Chem 100 8551–8555 Occurrence Handle1:CAS:528:DyaK28XisFKkt7k%3D Occurrence Handle10.1021/jp951981i

    Article  CAS  Google Scholar 

  • F Marga TC Pesacreta KH Hasenstein (2001) ArticleTitleBiochemical analysis of elastic and rigid cuticles of Cirsium horridulum Michx Planta 213 841–848 Occurrence Handle1:CAS:528:DC%2BD3MXotVaitrg%3D Occurrence Handle10.1007/s004250100576 Occurrence Handle11722120

    Article  CAS  PubMed  Google Scholar 

  • F Marga A Gallo KH Hasenstein (2003) ArticleTitleCell wall components affect mechanical properties: studies with thistle flowers Plant Physiol Biochem 41 792–797 Occurrence Handle1:CAS:528:DC%2BD3sXnvVOnt78%3D Occurrence Handle10.1016/S0981-9428(03)00120-7

    Article  CAS  Google Scholar 

  • Matas AJ, Cobb ED, Bartsch JA, Paolillo DJ, Niklas KJ. 2004a. Biomechanics and anatomy of Lycopersicon esculentum fruit peels and enzyme-treated samples. Am J Bot 91:352–360

    Article  Google Scholar 

  • AJ Matas J Cuartero A Heredia (2004b) ArticleTitlePhase transitions in the biopolyester cutin isolated from tomato fruit cuticles Thermochim Acta 409 165–168 Occurrence Handle1:CAS:528:DC%2BD3sXpvFGhsbg%3D Occurrence Handle10.1016/S0040-6031(03)00357-5

    Article  CAS  Google Scholar 

  • Nielsen LE, Landel RF. 1994. Mechanical properties of polymers and composites, 2nd ed. New York, USA, Marcel Dekker 557 p

    Google Scholar 

  • Niklas KJ. 1992. Plant biomechanics: an engineering approach to plant form and function. Chicago, USA, University of Chicago Press

    Google Scholar 

  • Ohta K, Hosoki T, Matsumoto K, Ohya M, Ito N, others. 1997. Relationships between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes. J Jpn Soc Hort Sci 65:753–759

    Article  Google Scholar 

  • Pascual B, Maroto JV, Sanbautista A, Lopez-Galarza S, Alagarda J. 2000. Influence of watering on the yield and cracking of cherry, fresh-market and processing tomatoes. J Hort Sci Biotechnol 75:171–175

    Google Scholar 

  • PD Petracek MJ Bukovac (1995) ArticleTitleRheological properties of enzymatically isolated tomato fruit cuticle Plant Physiol 109 675–679 Occurrence Handle1:CAS:528:DyaK2MXoslOqtLs%3D Occurrence Handle10.1104/pp.109.2.675 Occurrence Handle12228622 Occurrence Handle157635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RE Pruitt JP Vielle-Calzada SE Ploense U Grossniklaus SJ Lolle (2000) ArticleTitleFIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme Proc Natl Acad Sci USA 97 1311–1316 Occurrence Handle1:CAS:528:DC%2BD3cXpvFekug%3D%3D Occurrence Handle10.1073/pnas.97.3.1311 Occurrence Handle10655527 Occurrence Handle15605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AN Round B Yan S Dang R Estephan RE Stark et al. (2000) ArticleTitleThe influence of water on the nanomechanical behavior of the plant biopolyester cutin studies by AFM and solid-state NMR Biophys J 79 2761–2767 Occurrence Handle1:CAS:528:DC%2BD3cXotFegtbo%3D Occurrence Handle10.1016/S0006-3495(00)76515-5 Occurrence Handle11053149 Occurrence Handle1301157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönherr J. 1982. Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (editors), Encyclopedia of plant physiology, Berlin, New York, Springer-Verlag, pp 153–179

    Google Scholar 

  • J Schönherr K Eckl H Gruler (1979) ArticleTitleWater permeability of plant cuticles: the effect of temperature on diffusion of water Planta 147 21–26 Occurrence Handle10.1007/BF00384585 Occurrence Handle24310889

    Article  PubMed  Google Scholar 

  • L Schreiber M Riederer (1996) ArticleTitleEcophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats Oecologia 107 426–432 Occurrence Handle10.1007/BF00333931

    Article  Google Scholar 

  • L Schreiber J Schönherr (1990) ArticleTitlePhase transitions and thermal expansion coefficients of plant cuticles. The effects of temperature on structure and function Planta 182 186–193 Occurrence Handle1:STN:280:DC%2BC2c7js12jsA%3D%3D Occurrence Handle10.1007/BF00197109 Occurrence Handle24197094

    Article  CAS  PubMed  Google Scholar 

  • L Schreiber M Skrabs K Hartmann P Diamantopoulos E Simanova et al. (2001) ArticleTitleEffect of humidity on cuticular transpiration of isolated cuticular membranes and leaf disks Planta 214 274–282 Occurrence Handle1:CAS:528:DC%2BD3MXovFKnsL8%3D Occurrence Handle10.1007/s004250100615 Occurrence Handle11800392

    Article  CAS  PubMed  Google Scholar 

  • GB Seymour K Manning EM Eriksson AH Popovich GJ King (2002) ArticleTitleGenetic identification and genomic organization of factors affecting fruit texture J Exp Bot 53 2065–2071 Occurrence Handle1:CAS:528:DC%2BD38XnsVGks7k%3D Occurrence Handle10.1093/jxb/erf087 Occurrence Handle12324530

    Article  CAS  PubMed  Google Scholar 

  • DS Thompson (2001) ArticleTitleExtensiometric determination of the rheological properties of the epidermis of growing tomato fruit J Exp Bot 52 291–1301 Occurrence Handle10.1093/jexbot/52.359.1291

    Article  Google Scholar 

  • Vincent JFV. 1992. Biomechanics—materials. A practical approach. Oxford, UK, IRL Press at Oxford University Press

    Google Scholar 

  • Viougeas MA, Chamel A, Martin JB, Roby C. 1996. Characterization of isolated Hedera helix leaf cuticle by carbon-13 nuclear magnetic resonance. Plant Physiol Biochem 34:139–147

    CAS  Google Scholar 

  • SEC Whitney MGE Gothard JT Mitchell MJ Gidley (1999) ArticleTitleRoles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls Plant Physiol 121 657–664 Occurrence Handle1:CAS:528:DyaK1MXmslKjt7o%3D Occurrence Handle10.1104/pp.121.2.657 Occurrence Handle10517858 Occurrence Handle59429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann P, Neinhuis C. 1998. Biomechanics of isolated plant cuticles. Bot Acta 111:28–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Bargel.

Additional information

Note: During the course of revision of this manuscript, an article covering the same topic was published (Matas AJ, Lópes-Casado G, Cuartero J, Heredia A. 2005. Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles. Am J Bot 92:462–468).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelmann, H.G., Neinhuis, C. & Bargel, H. Influence of Hydration and Temperature on the Rheological Properties of Plant Cuticles and Their Impact on Plant Organ Integrity. J Plant Growth Regul 24, 116–126 (2005). https://doi.org/10.1007/s00344-004-0015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-004-0015-5

Keywords

Navigation