Skip to main content

Advertisement

Log in

Causes for the reversal of North Indian Ocean decadal sea level trend in recent two decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using satellite and in-situ observations, ocean reanalysis products and model simulations, we show a distinct reversal of the North Indian Ocean (NIO, north of 5°S) sea level decadal trend between 1993–2003 and 2004–3013, after the global mean sea level rise is removed. Sea level falls from 1993 to 2003 (Period I) but rises sharply from 2004 to 2013 (Period II). Steric height, which is dominated by thermosteric sea level of the upper 700 m, explains most of the observed reversal, including the spatial patterns of sea level change. The decadal change of surface turbulent heat flux acts in concert with the change of meridional heat transport at 5°S, with both being driven by decadal change of surface winds over the Indian Ocean, to cause sea level fall during Period I and rise during Period II. While the effect of surface net heat flux is consistent among various data sets, the uncertainty is larger for meridional heat transport, which shows both qualitative and quantitative differences amongst different reanalyses. The effect of the Indonesian Throughflow on heat content and thus thermosteric sea level is limited to the South Indian Ocean, and has little influence on the NIO. Our new results point to the importance of surface winds in causing decadal sea level change of the NIO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atlas R, Hoffman RN, Ardizzone J, et al (2009) Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product. In: AMS 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15

  • Berry DI, Kent EC (2011) Air-Sea fluxes from ICOADS: the construction of a new gridded dataset with uncertainty estimates. Int J Climatol 31:987–1001. doi:10.1002/joc.2059

    Article  Google Scholar 

  • Bobba AG (2002) Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrol Sci J 47:S67–S80. doi:10.1080/02626660209493023

    Article  Google Scholar 

  • Cazenave A, Cozannet GL (2014) Sea level rise and its coastal impacts: CAZENAVE AND LE COZANNET. Earths Future 2:15–34. doi:10.1002/2013EF000188

    Article  Google Scholar 

  • Chen G, Han W, Li Y, Wang D, McPhaden M (2015) Seasonal-to-interannual time scale dynamics of the equatorial undercurrent in the Indian Ocean. J Phys Oceanogr 45:1532–1553. doi:10.1175/JPO-D-14-0225.1

    Article  Google Scholar 

  • Cheng X, Qi Y, Zhou W (2008) Trends of sea level variations in the Indo-Pacific warm pool. Glob Planet Change 63:57–66. doi:10.1016/j.gloplacha.2008.06.001

    Article  Google Scholar 

  • Church JA, White NJ, Konikow LF, et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008: sea-level and energy budgets. Geophys Res Lett doi:10.1029/2011GL048794

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, et al (2011) The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Devore J L, Farnum N R, Doi J (2014) Applied statistics for engineers and scientists, 3rd. Brooks/Cole, Stamford, pp 656. ISBN-10: 113311136X

    Google Scholar 

  • Ducet N, Le Traon P, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J Geophys Res 105(C8):19477–19498

    Article  Google Scholar 

  • Ebita A, Kobayashi S, Ota Y, et al (2011) The Japanese 55-year reanalysis “JRA-55”: an interim report. SOLA 7:149–152. doi:10.2151/sola.2011-038

    Article  Google Scholar 

  • Feng M (2004) Multidecadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett. doi:10.1029/2004GL019947

    Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates: THE EN4 DATASET. J Geophys Res Oceans 118:6704–6716. doi:10.1002/2013JC009067

    Article  Google Scholar 

  • Han W, Meehl GA, Rajagopalan B, et al (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geosci 3:546–550. doi:10.1038/ngeo901

    Article  Google Scholar 

  • Han W, Meehl GA, Hu A, et al (2014a) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn 43:1357–1379. doi:10.1007/s00382-013-1951-1

    Article  Google Scholar 

  • Han W, Vialard J, McPhaden MJ, et al (2014b) Indian Ocean decadal variability: a review. Bull Am Meteorol Soc 95:1679–1703.

    Article  Google Scholar 

  • Han W, Meehl GA, Stammer D, Hu A, Hamlington B, Kenigson J, Palanisamy H, Thompson P (2017) Spatial patterns of sea level variability associated with natural internal climate modes. Surv Geophys 38(1):217-250

    Article  Google Scholar 

  • Ishii M, Kimoto M, Sakamoto K, Iwasaki S-I (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62:155–170

    Article  Google Scholar 

  • Johnson GC, Chambers DP (2013) Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications: grace seasonal cycles and decadal trends. J Geophys Res Oceans 118:4228–4240. doi:10.1002/jgrc.20307

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, et al (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Karim M, Mimura N (2008) Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob Environ Change 18:490–500. doi:10.1016/j.gloenvcha.2008.05.002

    Article  Google Scholar 

  • Lee T (2004) Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophys Res Lett. doi:10.1029/2004GL020884

    Google Scholar 

  • Lee T, McPhaden MJ (2008) Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett. doi:10.1029/2007GL032419

    Google Scholar 

  • Lee, S. K., W. Park, M.O. Baringer, A.L. Gordon, B. Huber and Y. Liu (2015) Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat Geosci 8, 445–449.

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010: WORLD OCEAN HEAT CONTENT. Geophys Res Lett 39: doi:10.1029/2012GL051106

    Google Scholar 

  • Li Y, Han W (2015) Decadal sea level variations in the Indian Ocean investigated with HYCOM: roles of climate modes, ocean internal variability, and stochastic wind forcing. J Clim 28:9143–9165. doi:10.1175/jcli-d-15-0252.1

    Article  Google Scholar 

  • Llovel W, Lee T (2015) Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013: Halosteric sea level change. Geophys Res Lett 42:1148–1157. doi:10.1002/2014GL062611

    Article  Google Scholar 

  • Madec G (2015) NEMO ocean engine. Note du Pole de modélisation de l’ Institut Pierre-Simon Laplace, Paris, France, 27, 401 pp, hdl:10013/epic.46840.d001

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480

    Article  Google Scholar 

  • Melini D, Piersanti A (2006) Impact of global seismicity on sea level change assessment. J Geophys Res. doi:10.1029/2004JB003476

    Google Scholar 

  • Merrifield MA (2011) A shift in western tropical pacific sea level trends during the 1990s. J Clim 24:4126–4138. doi:10.1175/2011JCLI3932.1

    Article  Google Scholar 

  • Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a pacific trade wind intensification: sea level and pacific trade winds. Geophys Res Lett. doi:10.1029/2011GL049576

    Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478. doi:10.1038/ngeo544

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Miyama T, McCreary JP, Jensen TG, et al (2003) Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Res Part II Top Stud Oceanogr 50:2023–2047. doi:10.1016/S0967-0645(03)00044-4

    Article  Google Scholar 

  • Mogensen K, Alonso Balmaseda M, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. European Centre for Medium-Range Weather Forecasts

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and jason altimeter missions. Mar Geod 33:435–446. doi:10.1080/01490419.2010.491031

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Vialard J, et al (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41:381–402. doi:10.1007/s00382-012-1463-4

    Article  Google Scholar 

  • Nieves V, Willis JK, Patzert WC (2015) Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349:532–535

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, et al (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543. doi:10.1007/s00382-011-1115-0

    Article  Google Scholar 

  • Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Int doi:10.1111/j.1365-246X.2010.04508.x

    Google Scholar 

  • Ravichandran M, BehringerD, Sivareddy S et al (2013) Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean. Ocean Model 69:123–135. doi:10.1016/j.ocemod.2013.05.003

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, et al (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise: acceleration of ice sheet loss. Geophys Res Lett. doi:10.1029/2011GL046583

    Google Scholar 

  • Roemmich D, Gilson J (2009) The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog Oceanogr 82:81–100. doi:10.1016/j.pocean.2009.03.004

    Article  Google Scholar 

  • Rowley RJ, Kostelnick JC, Braaten D et al (2007) Risk of rising sea level to population and land area. Eos. Trans Am Geophys Union 88:105–107

    Article  Google Scholar 

  • Santer BD, Boyle JS, Hnilo JJ et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337–7356

    Article  Google Scholar 

  • Schoenefeldt R, Schott FA (2006) Decadal variability of the Indian Ocean cross-equatorial exchange in SODA. Geophys Res Lett. doi:10.1029/2006GL025891

    Google Scholar 

  • Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123.

    Article  Google Scholar 

  • Schott FA, McCreary JP, Johnson GC (2004) Shallow overturning circulations of the tropical-subtropical oceans. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean-atmosphere interaction, Geophys. Monogr. Ser., vol. 147. AGU, Washington, D. C, pp 261–304

    Google Scholar 

  • Schott FA, Xie S-P, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys. doi:10.1029/2007RG000245

    Google Scholar 

  • Sivareddy S (2015) A study on global ocean analysis from an ocean data assimilation system and its sensitivity to observations and forcing fields. Ph.D. thesis, Andhra University. (Available online at http://www.incois.gov.in/documents/PhDThesis_Sivareddy.pdf)

  • Slangen AB, Lenaerts JT (2016) The sea level response to ice sheet freshwater forcing in the Community Earth System Model. Environ Res Lett 11:104002

    Article  Google Scholar 

  • Sprintall J, Wijffels SE, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J Geophys Res. doi:10.1029/2008JC005257

    Google Scholar 

  • Stammer D, Hüttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Clim 21:2093–2101

    Article  Google Scholar 

  • Stammer D, Agarwal N, Herrmann P, Köhl A, Mechoso CR (2011) Response of a coupled ocean–atmosphere model to Greenland ice melting. Surv Geophys 32(4-5):621

  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46. doi:10.1146/annurev-marine-121211-17240

    Article  Google Scholar 

  • Thompson, P. R., et al. (2016) Forcing of recent decadal variability in the Equatorial and North Indian Ocean. J Geophys Res Oceans 121(9): 6762–6778

    Article  Google Scholar 

  • Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern indo-pacific. J Clim 23:4429–4437. doi:10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • Trenary LL, Han W (2012) Intraseasonal-to-interannual variability of south indian ocean sea level and thermocline: remote versus local forcing. J PhysOceanogr 42:602–627. doi:10.1175/JPO-D-11-084.1

    Google Scholar 

  • Unnikrishnan AS, Nidheesh AG, Lengaigne M (2015) Sea level rise trends off the Indian coasts during the last two decades. Curr Sci 108(5): 966–971

    Google Scholar 

  • Vialard J (2015) Ocean science: Hiatus heat in the Indian Ocean. Nat Geosci 8(6): 423–424

    Article  Google Scholar 

  • Vidard A, Balmaseda M, Anderson D (2009) Assimilation of altimeter data in the ECMWF ocean analysis system 3. Mon. Weather Rev Am Meteorol Soc 137(4):1393–1408

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47:197–204. doi:10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

  • Yu L, Weller R (2007) Objectively analyzed air–sea heat fluxes for the global ice-free Oceans (1981–2005). Bull Am Meteorol Soc 88: 527–539. doi:10.1175/BAMS-88-4-527

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for all the organizations and persons who made the datasets used in this research freely available. We thank two anonymous reviewers to critically go through the manuscript and provide us valuable suggestions to improve the content of the manuscript. Special thanks to Drl Jerome Vialard for his valuable suggestions to improve the manuscript. AVISO monthly sea level anomaly maps are downloaded from ftp://ftp.aviso.altimetry.fr/global/delayed-time/grids/climatology/monthly_mean. NOCS v2.0 heat flux data, Ishii and Japan reanalysis data (JRA-55) are available at http://rda.ucar.edu/datasets/. EN4_v2a objective analysis data, ORAS4 reanalysis, OAFlux flux data, wind data (ERA-Interim, NCEP and CCMP), monthly HadISST are downloaded from http://apdrc.soest.hawaii.edu/. Tropflux data is available at http://www.incois.gov.in/tropflux/. ERA-Interim evaporation and precipitation data is found at http://apps.ecmwf.int/datasets/data/interim-full-mnth/. The encouragement and facilities provided by the Director, ESSO-INCOIS are gratefully acknowledged. The authors wish to acknowledge the use of the Ferret program (NOAA) for analysis and graphics in this paper. The authors gratefully acknowledge the financial support provided by the Earth System Science Organization, Ministry of Earth Sciences, and the government of India, to conduct this research. The National Monsoon Mission Directorate award number SSC-03-002 was awarded to Weiqing Han at the University of Colorado, in collaboration with ESSO-INCOIS. Weiqing Han is also partly supported by NSF AGS 1446480 and NASA OVWST NNX14AM68G. This is ESSO-INCOIS contribution No. 0275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ravichandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasu, U., Ravichandran, M., Han, W. et al. Causes for the reversal of North Indian Ocean decadal sea level trend in recent two decades. Clim Dyn 49, 3887–3904 (2017). https://doi.org/10.1007/s00382-017-3551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3551-y

Keywords

Navigation