Skip to main content

Advertisement

Log in

Influence of hydrogen on Fe–Mg interdiffusion in (Mg,Fe)O and implications for Earth’s lower mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Interdiffusion of Fe and Mg in (Mg,Fe)O has been investigated experimentally under hydrous conditions. Single crystals of MgO in contact with (Mg0.73Fe0.27)O were annealed hydrothermally at 300 MPa between 1,000 and 1,250°C and using a Ni–NiO buffer. After electron microprobe analyses, the dependence of the interdiffusivity on Fe concentration was determined using a Boltzmann–Matano analysis. For a water fugacity of ∼300 MPa, the Fe–Mg interdiffusion coefficient in Fe x Mg1−x O with 0.01 ≤ x ≤ 0.25 can be described by \({\tilde{D} = \tilde{D}_{0} x^{{{B}}} \exp ^{{- (Q + {{C}}x)/{{R}}T}}}\) with \({ \tilde{D}_{0}= (5\pm 1)\times 10^{-4}\,\hbox{m}^{2}\,\hbox{s}^{-1}, Q = 270\pm 20\,\hbox{kJ\,mol}^{-1}, {B} = 0.8\pm 0.1},\) and C = −80 ± 10 kJ mol−1. For x = 0.1 and at 1,000°C, Fe–Mg interdiffusion is a factor of ∼4 faster under hydrous than under anhydrous conditions. This enhanced rate of interdiffusion is attributed to an increased concentration of metal vacancies resulting from the incorporation of hydrogen. Such water-induced enhancement of kinetics may have important implications for the rheological properties of the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Strictly speaking, this mineral presents in the lower mantle should be call ferropericlase but it is not a term approved by the International Mineralogical Association yet. Also, the same mineral (Mg,Fe)O containing only a small amount of Fe, has been call magnesiowüstite for many years.

References

  • Bahr K, Simpson F (2002) Electrical anisotropy below low- and fast- plates: palaeoflow in the upper mantle? Science 295:1270–1272

    Article  Google Scholar 

  • Barnhoorn A, Bystricky M, Kunze K, Burlini L, Burg J-P (2005) Strain localisation in bimineralic rocks: experimental deformation of synthetic calcite-anhydrite aggregates. Earth Planet Sci Lett 240:748–763

    Article  Google Scholar 

  • Bell D, Rossman G, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2). doi:10.1029/2001JB000679

  • Bolfan-Casanova N (2000) The distribution of water in the Earth’s mantle: an experimental and infrared study. PhD Thesis, Universität Bayreuth

  • Bolfan-Casanova N (2005) Water in the Earth’s mantle. Mineral Mag 69:229–257

    Article  Google Scholar 

  • Bolfan-Casanova N, Mackwell S, Keppler H, McCammon C, Rubie DC (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: implications for the storage of water in the Earth’s lower mantle. Geophys Res Lett 29:89/81–89/84

    Article  Google Scholar 

  • Chakraborty S, Costa F (2004) Fast diffusion of Si and O in San Carlos olivine under hydrous conditions. Geochim Cosmochim Acta 68:A275

    Google Scholar 

  • Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876

    Google Scholar 

  • Demouchy S, Mackwell SJ (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30:486–494

    Article  Google Scholar 

  • Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Haüsermann D (1998) P–V–T equation of state of MgSiO3. Phys Earth Planet Int 105:21–31

    Article  Google Scholar 

  • Gonzalez R, Chen Y, Tsang KL (1982) Diffusion of deuterium and hydrogen in doped and undoped MgO. Phys Rev B 26:4637–4645

    Article  Google Scholar 

  • Gordon RS (1985) Diffusional creep phenomena in polycrystalline oxides. In: Schock RN (ed) Point defect in minerals. Geophysical Monograph, vol 31. American Geophysical Union, Washington, DC, pp 132–140

  • Gourdin WH, Kingery WD (1979) The defect structure of MgO containing trivalent cation solutes: shell mode calculations. J Mat Sci 14:2053–2073

    Article  Google Scholar 

  • Guyot F, Madon M, Peyronneau J, Poirier JP (1988) X-ray microanalysis of high-pressure/high-temperature phases synthesized from natural olivine in a diamond anvil cell. Earth Planet Sci Lett 90:52–64

    Article  Google Scholar 

  • Handy MR (1994) flow laws for rocks containing two non-linear viscous phases: a phenomenological approach. J Struct Geol 16:287–301

    Article  Google Scholar 

  • Hier-Majumber S, Anderson IM, Kohlstedt DL (2004) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res 110. doi:10.1029/2004JB003292

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Holtzman BK, Groebner NJ, Zimmerman ME, Ginsberg SB, Kohlstedt D (2003) Stress-driven melt segregation in partially molten rocks. Geochem Geophys Geosys 4(5). doi:10.1029/2001GC000258

  • Holtzman BK, Kohlstedt DL, Phipps Morgan J (2005) Viscous energy dissipation and strain partitionning in partially molten rocks. J Petrol. doi:10.1029/petrology/egi1065

  • Holzapfel C (2004) Fe–Mg interdiffusion at high pressures in mineral phases relevant for the Earth’s mantle. PhD Thesis, Universität Bayreuth

  • Holzapfel C, Rubie DC, Mackwell SJ, Frost DJ (2003) Effect of pressure on Fe–Mg interdiffusion in (Fe x Mg1−x)O, ferropericlase. Phys Earth Planet Inter 139:21–34

    Article  Google Scholar 

  • Huang X, Xu Y, Karato S-I (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570

    Google Scholar 

  • Ito E, Takahashi E (1987) Melting of peridotite at uppermost lower-mantle conditions. Nature 328:514–517

    Article  Google Scholar 

  • Jacobsen SD, Smyth JR, Spetzler HA, Frost DJ (2004) Sound velocities and elastic constant of iron-bearing hydrous ringwoodite. Phys Earth Planet Inter 143–144:47–56

    Article  Google Scholar 

  • Karato S-I (1990) The role of hydrogen diffusivity in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Katz RF, Speigelman M, Holtzman B (2006) The dynamics of melt and shear localization in partially molten aggregates. Nature 442:676–678

    Article  Google Scholar 

  • Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162

    Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Kröger FA, Vink HJ (1956) Relation between the concentrations of imperfections in crystalline solids. Academy Press, New York

    Google Scholar 

  • Larkin L, Zimmerman ME, Kohlstedt DL (2005) Phase separation during deformation of a two-phase rock. Eos Trans AGU 86 Fall Meet Suppl Abs T41C-1320

  • Libowitzky E, Rossman G (1996) Principles of quantitative absorbance measurements in anisotropc crystals. Phys Chem Mineral 23:319–327

    Google Scholar 

  • Mackwell SJ, Bystricky M, Sproni C (2005) Fe–Mg interdiffusion in (Mg,Fe)O. Phys Chem Mineral. doi:10.1007/s00269-005-0013-6

  • Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90:11319–11333

    Article  Google Scholar 

  • Matano C (1933) On the relation between diffusion coefficients and concentrations in solids metals (the nickel–copper system). Jpn J Phys 8:109–113

    Google Scholar 

  • Mei S, Kohlstedt DL (2000) Influence of water on the plastic deformation of olivine aggregates: 2. Diffusion creep regime. J Geophys Res 105:21,471–421,481

    Google Scholar 

  • Nakamura A, Schmalzried H (1984) On the Fe2+–Mg2+-interdiffusion in olivine (II). Ber Bunsenges Phys Chem 88:140–145

    Google Scholar 

  • O’Neill HS, Wall V (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of Earth’s upper mantle. J Petrol 28:1169–1191

    Google Scholar 

  • Paterson M (1969) The ductile of rocks. In: Argon AS (ed) Physics of strength and plasticity. MIT Press, Cambridge, pp 377–392

    Google Scholar 

  • Paterson M (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minéral 105:20–29

    Google Scholar 

  • Paterson MS (1990) Rock deformation experimentation. In: Duba A (ed) The brittle–ductile transition in rocks: the Head Volume, vol 56. Geophysical Monograph Serie American Geophysical Union, Washington DC, pp 187–194

  • Pitzer KS, Sterner SM (1994) Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J Chem Phys 101:3111–3116

    Article  Google Scholar 

  • Rauch M, Keppler H (2002) Water solubility in orthopyroxene. Contrib Mineral Petrol 143:525–536

    Article  Google Scholar 

  • Ringwood AE (1991) Phase transitions and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110

    Article  Google Scholar 

  • Schmalzried H (1981) Solid state reactions. Verlag Chemie, Weinheim, 254pp

  • Shinoda K, Yamakata M, Nanba T, Kimura H, Moriwaki T, Kondo Y, Kawamoto T, Niimi N, Miyoshi N, Aikawa N (2002) High-pressure phase transition and behavior of protons in brucite Mg(OH)2: a high-pressure–temperature study using IR synchrotron radiation. Phys Chem Miner 29:396–402

    Article  Google Scholar 

  • Valet P-M, Plushkell W, Engell H-J (1975) Equilibria between MgO–FeO–Fe2O3 solid solutions and oxygen. Arch Eisenhuettenwes 46:383–388

    Google Scholar 

  • Von Mises R (1928) Mechanik der plastichem Formänderung von Kristallen. Z Ang Math Mech 8:161–185

    Article  Google Scholar 

  • Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe–Mg)2SiO4. Appl Phys Lett 85:209–211

    Article  Google Scholar 

  • Wang J, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980

    Article  Google Scholar 

  • Yamazaki A, Irifune T (2003) Fe–Mg interdiffusion in magnesiowustite up to 35 GPa. Earth Planet Sci Lett 216:301–311

    Article  Google Scholar 

  • Yamazaki D, Karato S-I (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineral 86:385–381

    Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Zhao Y, Ginsberg S, Kohlstedt D (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol 147:155–161

    Article  Google Scholar 

Download references

Acknowledgments

SD thanks Christian Holzapfel for helpful advice at the early stage of the project, Mark Zimmerman for his generous assistance with running the Paterson apparatus, Nathalie Bolfan-Casanova for fervently and generously debating issues on point defects in (Mg,Fe)O, Catherine McCammon for Mössbauer analysis of the starting material, and Hans Keppler for access to his FTIR lab at the Bayerisches Geoinstitut. Electron microprobe analyses were carried out (with the help of Ellery Frahm) at the Electron Microprobe Laboratory, Department of Geology and Geophysics, University of Minnesota-Twin Cities. NSF supported the research through the grant NSF EAR-0337012 (to SJM) and NSF EAR-0439747 (to DLK). This paper is LPI publication #1326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Demouchy.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demouchy, S., Mackwell, S.J. & Kohlstedt, D.L. Influence of hydrogen on Fe–Mg interdiffusion in (Mg,Fe)O and implications for Earth’s lower mantle. Contrib Mineral Petrol 154, 279–289 (2007). https://doi.org/10.1007/s00410-007-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0193-9

Keywords

Navigation