Skip to main content

Advertisement

Log in

Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alıcı Şen P, Temel T, Gourgaud A (2004) Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol Mag 141:81–98

    Google Scholar 

  • Aydar E (1997) Volcanological and petrological characteristics of Karataş volcanites, Central Anatolia. Hacettepe Üniv Yerbilim Derg 19:41–55 (in Turkish with English abstract)

    Google Scholar 

  • Aydar E, Gourgaud A (1998) The geology of Mount Hasan stratovolcano, central Anatolia, Turkey. J Volcanol Geothermal Res 85:129–152

    Google Scholar 

  • Aydar E, Gourgaud A, Deniel C, Lyberis N, Gündoğdu N (1995) Le volcanisme quaternaire d’Anatolie centrale (Turquie): association de magmatismes calco-alcalin et alcalin en domaine de convergene. Can J Earth Sci 32:1058–1069

    Google Scholar 

  • Aydar E, Schmitt AK, Çubukçu HE, Akın L, Ersoy O, Şen E, Duncan RA, Atıcı G (2012) Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geothermal Res 213–214:83–97

    Google Scholar 

  • Aydin F (2008) Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Niğde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence. Eur J Min 20:101–118

    Google Scholar 

  • Aydin F, Karsli O, Chen B (2008) Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos 104:249–266

    Google Scholar 

  • Aydin F, Sönmez M, Dirik K (2011) Geochronology and petrogenesis of Niğde Volcanic Complex: implications on source composition, melt evolution and geodynamic processes in the central anatolia during neo-quaternary. İn: TUBITAK project (grant 108Y003), (Unpublished data)

  • Aydin F, Siebel W, Uysal I, Ersoy EY, Schmitt A, Sönmez M, Duncan R (2012) Geochemical, isotopic (Sr–Nd–Pb) and geochronological (Ar–Ar and U–Pb) constraints on quaternary bimodal volcanism of the Niğde Volcanic Complex (Central Anatolia, Turkey). In: EGU conference, geophysical research abstracts, vol 14, pp 14300–14302

  • Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007) 40Ar/39Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history. Chem Geol 236:134–166

    Google Scholar 

  • Batum I (1978) Geochemistry and petrology of Acıgöl and Göllüdağ volcanics at southwest of Nevşehir Central Anatolia, Turkey. Yerbilimleri 4(1–2):70–88 (in Turkish with English abstract)

    Google Scholar 

  • Beccaluva L, Bianchini G, Bonadiman C, Siena F, Vaccaro C (2004) Coexisting anorogenic and subduction-related metasomatism in the mantle xenoliths from the Betic Cordillera (southern Spain). Lithos 75:67–87

    Google Scholar 

  • Beekman PH (1966) The Pliocene and quaternary volcanism in the Hasan Dag-Melendiz Dag region. Bull Mineral Res Explor Inst 66:90–105

    Google Scholar 

  • Besang C, Eckhardt FJ, Harre W, Kreuzer H, Müller P (1977) Radiometrische Altersbestimmungen an neogenen Eruptivgesteinen der Türkei. Geol Jb B25:3–36

    Google Scholar 

  • Bigazzi G, Yeğingil Z, Ercan T, Oddone M, Özdoğan M (1993) Fission track dating obsidians of central and northern Anatolia. Bull Volcanol 55:588–595

    Google Scholar 

  • Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057

    Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24

    Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodin Acta 14:3–30

    Google Scholar 

  • Boztuğ D, Arehart GB, Platevoet B, Harlavan Y, Bonin B (2007) High-K calc alkaline I-type granitoids from the composite Yozgat batholith generated in a postcollisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Miner Petrol 91:191–223

    Google Scholar 

  • Bradshaw TK, Smith EI (1994) Polygenetic Quaternary volcanism at Crater Flat, Nevada. J Volcanol Geotherm Res 63:165–182

    Google Scholar 

  • Brophy JG (1991) Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contrib Mineral Petrol 109:173–182

    Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U–Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for > 250 k.y. magma residence times. Geology 27(11):1035–1038

    Google Scholar 

  • Chen CF, Turner JS (1980) Crystallization in a double-diffusive system. J Geophys Res 85(2573):2593

    Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamic significance. Earth Planet Sci Lett 79:281–302

    Google Scholar 

  • Coward MP, Dewey JF, Hancock PL (1987) Continental extensional tectonics. Geol Soc Spec Publ 28:1–637

    Google Scholar 

  • Deering CD, Bachmann O, Dufek J, Gravley DM (2011) Rift-Related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. J Petrol 52(11):2243–2263

    Google Scholar 

  • Deniel C, Aydar E, Gourgaud A (1998) The Hasan Dagi stratovolcano (Central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone. J Volcanol Geotherm Res 87:275–302

    Google Scholar 

  • Dewey JF, Hempton MR, Kidd WSF, Şaroğlu F, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia-a young collision zone. In Coward MP, Ries AC (eds) Collision zone tectonics: Geol Soc London Spec Publ 19:3–36

  • Dilek Y (2006) Collision tectonics of the Eastern Mediterranean region: causes and consequences. Geol Soc Am Spec Paper 409:1–13

    Google Scholar 

  • Dilek Y, Altunkaynak S (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab breakoff, and lithospheric tearing in an orogenic belt. In van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. Geol Soc London Spec Publ 311:213–233

  • Dilek Y, Sandvol E (2009) Seismic structure, crustal architecture and tectonic evolution of the Anatolian–African Plate Boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. J Geol Soc London Spec Publ 327:127–160

    Google Scholar 

  • Dilek Y, Whitney DL (2000) Cenozoic crustal evolution in central Anatolia: extension, magmatism and landscape development: proceedings of the third international conference on the geology of the eastern mediterranean. In: Geological survey department, Nicosia, Cyprus, pp 183–192

  • Dirik (2001) Neotectonic evolution of the northwestward arched segment of the Central Anatolian Fault Zone, Central Anatolia-Turkey. Geodin Acta 14:147–158

    Google Scholar 

  • Dirik K, Göncüoğlu C (1996) Neotectonic characteristics of central Anatolia. Inter Geol Rev 38:807–817

    Google Scholar 

  • Doe BR, Leeman WP, Christiansen RL, Hedge CE (1982) Lead and strontium isotopes and related trace elements as genetic tracers in the upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau volcanic Field. J Geophys Res 87:4785–4806

    Google Scholar 

  • Druitt TH, Brenchley PJ, Gökten YE, Francaviglia V (1995) Late-Quaternary rhyolitic eruptions from the Acıgöl Complex, central Turkey. J Geol Soc (London) 152:655–667

    Google Scholar 

  • Duncan AR, Erlank AJ, Marsh J (1984) Regional geochemistry of the Karoo igneous province. Spec Publ Geol Soc Africa 13:355–388

    Google Scholar 

  • Elburg MA, Bergen MV, Hoogewerff J, Foden J, Vroon P, Zulkarnain I, Nasution A (2002) Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochim Cosmochim Acta 66:2771–2789

    Google Scholar 

  • Ercan T, Tokel S, Matsuda JI, Ul T, Notsu K, Fujitani T (1992) New geochemical, isotopic and radiometric data of the Quaternary volcanism of Hasandağı-Karacadağ (Central Anatolia). TJK Bülteni 7:8–21 (In Turkish with English abstract)

    Google Scholar 

  • Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet Sci Lett 242:85–97

    Google Scholar 

  • Francalanci L, Varekamp JC, Vougioukalakis G, Defant MJ, Innocenti F, Manetti P (1995) Crystal retention, fractionation and crustal assimilation in a convecting magma chamber, Nisyros Volcano, Greece. Bull Volcanol 56(8):601–620

    Google Scholar 

  • Frost CD, Frost BR, Chamberlain KR, Edwards BR (1999) Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite. J Petrol 40:1771–1802

    Google Scholar 

  • Frost CD, Bell JM, Frost BR, Chamberlain KR (2001) Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith. Geology 29:515–518

    Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Google Scholar 

  • Gans CR, Beck SL, Zandt G, Biryol CB, Özacar AA (2009) Detecting the limit of slab break-off in Central Turkey: new high-resolution Pn tomography results. Geophys J Int 179:1566–1572

    Google Scholar 

  • Garland FE, Hawkesworth CJ, Mantovani MSM (1995) Description and petrogenesis of Parana rhyolites, Southern Brazil. J Petrol 36:1193–1227

    Google Scholar 

  • Ge XY, Li XH, Chen ZG, Li W (2002) Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in the eastern China: constraints on crustal thickness. Chin Sci Bull 47:962–968

    Google Scholar 

  • Geist D, Howard KA, Larson P (1995) The generation of oceanic rhyolites by crystal fractionation: the basalt–rhyolite association at Volcán Alcedo, Galápagos Archipelago. J Petrol 36:965–982

    Google Scholar 

  • Gençalioğlu Kuşçu G, Geneli F (2010) Review of post- collisional volcanism in the Central Anatolian Volcanic province (Turkey), with special reference to the Tepekoy Volcanic complex. Int Earth Sci (Geol Rdsch) 99:593–621

    Google Scholar 

  • Gertisser R, Keller J (2000) From basalt to dacite: origin and evolution of the calc-alkaline series of Salina, Aeolian Arc. Italy. Contrib Mineral Petrol 139(5):607–626

    Google Scholar 

  • Glover C, Robertson AHF (1998) Role of extensional processes and uplift in the Plio-Quaternary sedimentary and tectonic evolution of the Aksu Basin, southwest Turkey. J Geol Soc London 155:365–368

    Google Scholar 

  • Göncüoğlu MC (1986) Geochronological data from the southern part (Niğde area) of the Central Anatolian Massif. Bull Mineral Res Explor Inst (MTA) 105(106):83–96

    Google Scholar 

  • Göncüoğlu MC, Toprak V (1992) Neogene and Quaternary volcanism of central Anatolia: a volcano-structural evaluation. Bull de la Section Volcanol Soc Géol France 26:1–6

    Google Scholar 

  • Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the Fernando de Noronha. Earth Planet Sci Lett 136:281–296

    Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3252–3274

    Google Scholar 

  • Güleç N (1991) Crust-mantle interaction in Western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geol Mag 128(5):417–435

    Google Scholar 

  • Hart S, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment. Science 256:517–520

    Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Sciences 276:551–555

    Google Scholar 

  • Hildreth W, Halliday AN, Christiansen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone plateau volcanic field. J Petrol 32:63–138

    Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Ilbeyli N, Pearce JA, Thirlwall MF, Mitchell JG (2004) Petrogenesis of collision-related plutonic in Central Anatolia, Turkey. Lithos 72:163–182

    Google Scholar 

  • Innocenti F, Mazzuoli G, Pasquare F, Radicati Di Brozola F, Villari L (1975) The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri-Niğde area. Geol Mag 112(4):349–360

    Google Scholar 

  • Jones WB (1979) Mixed benmoreite/trachyte flows from Kenya and their bearing on the Daly gap. Geol Mag 116:487–489

    Google Scholar 

  • Kadıoğlu YK, Dilek Y, Güleç N, Foland KA (2003) Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. J Geol 111:671–690

    Google Scholar 

  • Kocyiğit A, Beyhan A (1998) A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284:317–336

    Google Scholar 

  • Köksal S, Göncüoğlu MC (2008) Sr and Nd isotopic characteristics of some S-, I-and A-type granitoids from Central Anatolia. Turk J Earth Sci 17:111–127

    Google Scholar 

  • Köksal S, Romer RL, Göncüoğlu MC, Toksoy-Köksal F (2004) Timing of post collision H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids Turkey. Int J Earth Sci 93:974–989

    Google Scholar 

  • Koppers AAP (2002) ArArCALC—software for 40Ar/39Ar age calculations. Comput Geosci 28(5):605–619

    Google Scholar 

  • Kürkçüoğlu B, Şen E, Aydar E, Gourgaud A, Gündoğdu N (1998) Geochemical apporoach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. J Volcanol Geotherm Res 85:473–494

    Google Scholar 

  • Lacasse C, Sigurdsson H, Carey SN, Jóhannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399

    Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to icelandic basalts. Earth Planet Sci Lett 37:380–392

    Google Scholar 

  • Le Maitre RW (ed) (2002) A classification of igneous rocks and glossary of terms. In: Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge

  • Le Pennec J-L, Bourdier J-L, Temel A, Camus G, Gourgaud A (1994) Neogene ignimbrites of the Nevşehir plateau (central Turkey): stratigraphy, distribution and sources constraints. J Volcanol Geotherm Res 63:59–87

    Google Scholar 

  • Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010) Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55(15):1535–1546

    Google Scholar 

  • McBirney AR, Baker BH, Nilson RH (1985) Liquid fractionation. Part I: basic principles and experimental simulations. J Volcanol Geotherm Res 24:1–24

    Google Scholar 

  • McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115:303–312

    Google Scholar 

  • McCurry M, Rodgers DW (2009) Mass transfer along the Yellowstone hotspot track I: petrologic constraints on the volume of mantle-derived magma. J Volcanol Geotherm Res 188(1–3):86–98

    Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean. Geophys J R Astron Soc 30:109–185

    Google Scholar 

  • Min KW, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64(1):73–98

    Google Scholar 

  • Mtoro M, Maboko MAH, Manya S (2009) Geochemistry and geochronology of the bimodal volcanic rocks of the Suguti area in the southern part of the Musoma-Mara Greenstone Belt, Northern Tanzania. Precambrian Res 174:241–257

    Google Scholar 

  • Nash BP, Perkins ME, Christensen JN, Lee D-C, Halliday AN (2006) The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas. Earth Planet Sci Lett 247(1–2):143–156

    Google Scholar 

  • Notsu K, Fujitani T, Ui T, Matsuda J, Ercan T (1995) Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. J Volcanol Geotherm Res 64:171–192

    Google Scholar 

  • Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jovilet L, Horva THF, Seranne M (eds) The Mediterranean basin: tertiary extension within the Alpine orogen. Geol Soc London Spec Publ 156:475–515

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res: Solid Earth (1978–2012), 98(B8):13997–14013

  • Parlak O, Höck V, Delaloye M (2002) The supra-subduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224

    Google Scholar 

  • Pasquare G, Poli S, Vezzoli L, Zanchi A (1988) Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics 146:217–230

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: Orogenic andesites and plate tectonics. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA, Bender JF, de Long SE, Kidd WSF, Low PJ, Güner Y, Şaroğlu F, Yılmaz T, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in eastern Anatolia, Turkey. J Volcanol Getherm Res 44:189–229

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Google Scholar 

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationship between mafic and peralkaline felsic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa Volcano, Central Ethiopian Rift. J Petrol 44:2003–2032

    Google Scholar 

  • Pe-Piper G, Moulton B (2008) Magma evolution in the Pliocene-Pleistocene succession of Kos, South Aegean arc (Greece). Lithos 106(1–2):110–124

    Google Scholar 

  • Perini G, Francalanci L, Davidson JP, Conticelli S (2004) The petrogenesis of Vico Volcano, Central Italy: an example of low scale mantle heterogeneity. J Petrol 45:139–182

    Google Scholar 

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108(B2):2065. doi:10.1029/2002JB001757

    Google Scholar 

  • Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera; 230Th- 238U ion microprobe dating of young zircons. Earth Planet Sci Lett 150(1–2):27–39

    Google Scholar 

  • Reilinger RE, McClusky SC, Oral MB (1997) Global positioning system measurements of present day crustal movements in the Arabian-african-Eurasian plate collision zone. J Geophys Res 102:9983–9999. doi:10.1029/96JB03736

    Google Scholar 

  • Robertson AHF, Grasso M (1995) Overview of the late Triassic-recent tectonic and palaeo-environmental development of the Mediterranean region. Terra Nova 7:114–127

    Google Scholar 

  • Rooney T, Hart W, Hall C, Ayalew D, Ghiorso M, Hidalgo P, Yirgu G (2012) Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol 164(3):407–426

    Google Scholar 

  • Rudnick RL, Gao S (2004) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Sage RP, Lightfoot PC, Doherty W (1996) Bimodal cyclical Archean basalts and rhyolites from the Michipicoten (Wawa) greenstone belt, Ontario: geochemical evidence for magma contributions from the asthenospheric mantle and ancient continental lithosphere near the southern margin of the Superior Province. Precambrian Res 76:119–153

    Google Scholar 

  • Sañudo-Wilhelmy SA, Flegal AR (1994) Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. Geochim Cosmochim Acta 58(15):3315–3320

    Google Scholar 

  • Schmitt AK, Grove M, Harrison TM, Lovera O, Hulen J, Walters M (2003) The Geysers-Cobb Mountain Magma System, California (Part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67(18):3423–3442

    Google Scholar 

  • Schmitt AK, Danisîk M, Evans N, Siebel W, Kiemele E, Aydin F, Harvey JC (2011) Acıgöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contrib Mineral Petrol 162:1215–1231

    Google Scholar 

  • Şengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comprasion with Tibet. Tectonophysics 55:361–376

    Google Scholar 

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey.A plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Biddle TR, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Soc Econ Paleontol Min Spec Publ 37:227–264

  • Siebel W, Schmitt AK, Kiemele E, Danišík M, Aydin F (2011) Acıgöl rhyolite field, central Anatolia (Part II): geochemical and isotopic (Sr-Nd-Pb, δ18O) constraints on volcanism involving two high-silica rhyolite suites. Contrib Mineral Petrol 162:1233–1247

    Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Letters 266(1–2):182–194

    Google Scholar 

  • Smith EI, Sanchez A, Walker JD, Wang K (1999) Geochemistry of mafic magmas in the Hurricane volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. J Geol 107:433–448

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology-convention on use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Google Scholar 

  • Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition an processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ, pp 313–345

  • Tatar O, Gürsoy H, Piper DD (2002) Differential Neotectonic rotations in Anatolia and the Tauride Arc: paleomagnetic investigation of the Erenlerdağ Volcanic Complex and Isparta volcanic district, South-central Turkey. J Geol Soc Lond 159:281–294. doi:10.1144/0016-764901-035

    Google Scholar 

  • Temel A, Gündoğdu MN, Gourgaud A, Le Pennec J-L (1998) Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry. J Volcanol Geotherm Res 85:447–471

    Google Scholar 

  • Thompson RN (1972) Evidence for a chemical discontinuity near the basalt-andesite transition in many anorogenic volcanic suites. Nature 236:106–110

    Google Scholar 

  • Toprak V (1998) Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey. J Volcanol Geotherm Res 85:55–67

    Google Scholar 

  • Toprak V, Göncüoğlu MC (1993) Tectonic control on the evolution of the Neogene-Quaternary Central Anatolian Volcanic Province, Turkey. Geol J 28:357–369

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti‐thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi:10.1029/2006GC001449

  • Türkecan A, Akçay AE, Satır M, Dönmez M, Ercan T (2003) Melendiz dağları (Niğde) volkanizması. In: 56th geological congress of Turkey, extended abstracts, Ankara, pp 16–17

  • Turner S, Sandiford M, Foden J (1992) Some geodynamic and compositional constraints on “postorogenic” magmatism. Geology 20:931–934

    Google Scholar 

  • Van Wagoner NA, Leybourne MI, Dadd KA, Baldwin DK, McNeil W (2002) Late Silurian bimodal volcanism of southwestern New Brunswick, Canada: products of continental extension. Geol Soc Am Bull 114:400–418

    Google Scholar 

  • Vazquez JA, Reid MR (2004) Probing the accumulation history of the voluminous Toba magma. Science 305:991–994

    Google Scholar 

  • Wang KL, Chung SL, O’Reilly SY, Sun SS, Shinjo R, Chen CH (2004) Geochemical constraints for the genesis of post-collisional magmatism and geodynamic evolution of the Northern Taiwan Region. J Petrol 45:975–1011

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Google Scholar 

  • Whitney DL, Dilek Y (1997) Core complex development in central Anatolia. Geology 25:1023–1026

    Google Scholar 

  • Whitney DL, Dilek Y (1998) Metamorphism during crustal thickening and extension in central Anatolia: The Niğde metamorphic core complex. J Petrol 39:1385–1403

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

  • Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Gunther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870

    Google Scholar 

  • Yang JH, Chung SI, Zhai MG, Zhou XH (2004) Geochemical and Sr–Nd–Pb isotopic compositions of mafic dykes from the Jiaodong peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos 73:145–160

    Google Scholar 

  • Yılmaz Y (1993) New evidence and model on the evolution of the Southeast Anatolian orogeny. Geol Soc Am Bull 105:251–271

    Google Scholar 

  • Zhang XH, Zhang H, Tang Y, Wilde SA, Hu Z (2008) Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implications for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol 249:262–281

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Grant 108Y003) and the German Science Foundation (Grant Si 718/9-1). The ion microprobe facility at the University of California, Los Angeles, is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation. The authors are grateful to John Huard for help during Ar–Ar dating and the Niğde University for contributions during the sample preparation processes. The authors sincerely thank Jochen Hoefs for editorial handling and to Oliver Bachman and one anonymous referee for their valuable suggestions, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Aydin.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2014_1078_MOESM1_ESM.xls

Results of U–Pb dating and δ18O analysis for individual zircon crystals from the Niğde felsic volcanic rocks (XLS 61 kb)

410_2014_1078_MOESM2_ESM.xls

40Ar/39Ar step-heating data for whole-rocks and amphibole crystals from the Niğde mafic and felsic volcanic rocks (XLS 38 kb)

410_2014_1078_MOESM3_ESM.pdf

Plots of (a) 207Pb/204Pb vs 206Pb/204Pb and (b) 208Pb/204Pb vs 206Pb/204Pb for the Niğde bimodal rocks. DMM, EM I- and EM II-type mantle taken after Zindler and Hart (1986) and marine sediments from Beccaluva et al. (2004). Northern hemisphere reference line (NHRL) and Geochron (4.55 Ga) are shown for comparison (PDF 1362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, F., Schmitt, A.K., Siebel, W. et al. Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications. Contrib Mineral Petrol 168, 1078 (2014). https://doi.org/10.1007/s00410-014-1078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1078-3

Keywords

Navigation