Skip to main content

Advertisement

Log in

Overview of the principles and practice of biodosimetry

  • Review Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, Darroudi F, Fattibene P, Gruel G, Guclu I, Horn S, Jaworska A, Kulka U, Lindholm C, Lloyd D, Longo A, Marrale M, Monteiro Gil O, Oestreicher U, Pajic J, Rakic B, Romm H, Trompier F, Veronese I, Voisin P, Vral A, Whitehouse CA, Wieser A, Woda C, Wojcik A, Rothkamm K (2011) Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat Prot Dosim 147:573–592

    Article  Google Scholar 

  • Alexander GA, Swartz HM, Amundson SA, Blakely WF, Buddemeier B, Gallez B, Dainiak N, Goans RE, Hayes RB, Lowry PC (2007) BiodosEPR-2006 meeting: acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents. Radiat Meas 42:972–996

    Article  Google Scholar 

  • Bassinet C, Trompier F, Clairand I (2010a) Radiation accident dosimetry on glass by TL and EPR spectrometry. Health Phys 98:400–405

    Article  Google Scholar 

  • Bassinet C, Trompier F, Clairand I (2010b) Radiation accident dosimetry on electronic components by OSL. Health Phys 98:440–445

    Article  Google Scholar 

  • Beinke C, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Herodin F, Jones A, Kulka U, Lista F, Lloyd D, Martigne P, Moquet J, Oestreicher U, Romm H, Rothkamm K, Valente M, Meineke V, Braselmann H, Abend M (2013) Nato dosimetry study: laboratory intercomparison of the dicentric chromosome analysis assay. Radiat Res 180:129–137

    Article  Google Scholar 

  • Black PJ, Swarts SG (2010) Ex vivo analysis of irradiated fingernails: chemical yields and properties of radiation-induced and mechanically-induced radicals. Health Phys 98:301–308

    Article  Google Scholar 

  • Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, Lenigk R, Zenhausern F (2010) Biodosimetry on small blood volume using gene expression assay. Health Phys 98:179–185

    Article  Google Scholar 

  • Buddemeier BR (2010) Reducing the consequences of a nuclear detonation: recent research. Bridge 40:28–38

    Google Scholar 

  • Buddemeier BR, Dillon MB (2009) Key response planning factors for the aftermath of nuclear terrorism. LLNL-TR-410067. Lawrence Livermore National Laboratory (LLNL), Berkeley

    Book  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2006) Emergency preparedness and response. Specific hazards. Radiation. Acute radiation syndrome: A fact sheet for physicians. http://www.bt.cdc.gov/radiation/arsphysicianfactsheet.asp (Accessed 28 October 2013)

  • Coleman CN, Hrdina C, Bader JL, Norwood A, Hayhurst R, Forsha J, Yeskey K, Knebel A (2009) Medical response to a radiologic/nuclear event: integrated plan from the office of the assistant secretary for preparedness and response, department of health and human services. Ann Emerg Med 53:213–222

    Article  Google Scholar 

  • Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace A Jr (2011) Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 87:802–823

    Article  Google Scholar 

  • Demidenko E, Williams BB, Swartz HM (2009) Radiation dose prediction using data on time to emesis in the case of nuclear terrorism. Radiat Res 171:310–319

    Article  Google Scholar 

  • Desrosiers M, Schauer DA (2001) Electron paramagnetic resonance (EPR) biodosimetry. Nucl Instrum Methods B 184:219–228

    Article  ADS  Google Scholar 

  • DeWitt R, Klein D, Yukihara E, Simon S, McKeever S (2010) Optically stimulated luminescence (OSL) of tooth enamel and its potential use in post-radiation exposure triage. Health Phys 98:432–439

    Article  Google Scholar 

  • DiCarlo AL, Maher C, Hick JL, Hanfling D, Dainiak N, Chao N, Bader JL, Coleman CN, Weinstock DM (2011) Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation. Disaster Med Public Health Prep 5(Suppl 1):S32–S44

    Article  Google Scholar 

  • Flood AB, Nicolalde RJ, Williams BB, Demidenko E, Evans, J, Greene MA, Swartz HM (2012) Comparative evaluation of dosimetric methods for triage in large-scale radiation events. Paper 34: MP-HFM-223-34 in Proceedings STO-MP-HFM-223: NATO symposium on biological effects of ionizing radiation exposure and countermeasures: current status and future perspectives, Ljubljana, Slovenia ISBN978-92-837-0178-1. http://www.cso.nato.int/abstracts.aspx?RestrictRDP=4 (Accessed 28 Oct 2013)

  • Fattibene P, Callens F (2010) EPR dosimetry with tooth enamel: a review. Appl Radiat Isot 68:2033–2116

    Article  Google Scholar 

  • Fenech M (2011) Current status, new frontiers and challenges in radiation biodosimetry using cytogenetic, transcriptomic and proteomic technologies. Radiat Meas 46:737–741

    Article  Google Scholar 

  • Fenech M, Kirsch-Volders M, Rossnerova A, Sram R, Romm H, Bolognesi C, Ramakumar A, Soussaline F, Schunck C, Elhajouji A, Anwar W, Bonassi S (2013) HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Heal 216:541–552

    Article  Google Scholar 

  • Flood AB, Nicolalde RJ, Demidenko E, Williams BB, Shapiro A, Wiley AL Jr, Swartz HM (2011) A framework for comparative evaluation of dosimetric methods to triage a large population following a radiological event. Radiat Meas 46:916–922

    Article  Google Scholar 

  • Garty G, Chen Y, Salerno A, Turner H, Zhang J, Lyulko O, Bertucci A, Xu Y, Wang H, Simaan N (2010) The RABIT: a rapid automated biodosimetry tool for radiological triage. Health Phys 98:209–217

    Article  Google Scholar 

  • Goans RE (2002) Clinical care of the radiation-accident patient: Patient presentation, assessment, and initial diagnosis. In: Ricks RC, Berger ME, O’Hara FM Jr (eds) The Medical Basis for Radiation-Accident Preparedness: The Clinical Care of Victims. Parthenon, New York, pp 11–22

    Google Scholar 

  • Goans RE, Holloway EC, Berger ME, Ricks RC (2001) Early dose assessment in criticality accidents. Health Phys 81:446–449

    Article  Google Scholar 

  • González AJ (2007) An international perspective on radiological threats and the need for retrospective biological dosimetry of acute radiation overexposures. Radiat Meas 42:1053–1062

    Article  Google Scholar 

  • Gougelet RM, Rea ME, Nicolalde RJ, Geiling JA, Swartz HM (2010) The view from the trenches: Part 1-emergency medical response plans and the need for EPR screening. Health Phys 98:118–127

    Article  Google Scholar 

  • Grace MB, Moyer BR, Prasher J, Cliffer KD, Ramakrishnan N, Kaminski J, Coleman CN, Manning RG, Maidment BW, Hatchett R (2010) Rapid radiation dose assessment for radiological public health emergencies: roles of NIAID and BARDA. Health Phys 98:172–178

    Article  Google Scholar 

  • He X, Swarts SG, Demidenko E, Flood AB, Grinberg O, Gui J, Mariani M, Marsh SD, Ruuge AE, Sidabras JW, Tipikin D, Wilcox DE, and Swartz HM (2014) Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method. Radiat Prot Dosim (accepted)

  • Horn S, Rothkamm K (2011) Candidate protein biomarkers as rapid biomarkers of radiation exposure. Radiat Meas 46:903–906

    Article  Google Scholar 

  • Kleinerman RA, Romanyukha AA, Schauer DA, Tucker JD (2006) Retospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance, and glycophorin-A assay. Radia Res 166:287–302

    Article  Google Scholar 

  • Lloyd DC, Edwards AA, Moquet JE, Guerrero-Carbajal YC (2000) The role of cytogenetics in early triage of radiation casualties. Appl Radiat Isot 52:1107–1112

    Article  Google Scholar 

  • Marchetti F, Coleman MA, Jones IM, Wyrobek AJ (2006) Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 82:605–639

    Article  Google Scholar 

  • McKeever SWS, Botter-Jensen L, Agersnap Laresen N, Duller GAT (1997) Temperature dependence of OSL decay curves: experimental and theoretical aspects. Radiat Meas 27:161–179

    Article  Google Scholar 

  • McNamee JP, Flegal FN, Green HB, Marro L, Wilkins RC (2009) Validation of the cytokinesis-block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Radiat Prot Dosim 135:232–242

    Article  Google Scholar 

  • Muznyk NA, Wilkins RC, Carr Z, Lloyd DC (2012) The capacity, capabilities and needs of the WHO biodosenet member laboratories. Radiat Prot Dosim 151:611–620

    Article  Google Scholar 

  • Nicolalde RJ, Flood AB, Watts BV, Swartz HM, Ma LE, Toler AJ, Gougelet RM. (2012) A decision support tool for evaluating the effectiveness and logistic consideration of biodosimetry methods. Paper 34: MP-HFM-223-35 in Proceedings STO-MP-HFM-223: NATO symposium on biological effects of ionizing radiation exposure and countermeasures: current status and future perspectives, Ljubljana, Slovenia ISBN 978-92-837-0179-8. http://www.cso.nato.int/abstracts.aspx?RestrictRDP=4. (Accessed 28 Oct 2013)

  • Ossetrova NI, Sandgren DJ, Gallego S, Blakely WF (2010) Combined approach of hematological biomarkers and plasma protein saa for improvement of radiation dose assessment triage in biodosimetry applications. Health Phys 98:204–208

    Article  Google Scholar 

  • Parker DD, Parker JC (2007) Estimating radiation dose from time to emesis and lymphocyte depletion. Health Phys 93:701–704

    Article  Google Scholar 

  • Paul S, Amundson SA (2008) Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys 71:1236–1244

    Article  Google Scholar 

  • Phillips M, Byrnes R, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mehta V, Mayur M, Patel U, Ramakrishna N, Schiff PB, Zhang X (2013) Detection of volatile biomarkers of therapeutic radiation in breath. J Breath Res 7:036002. doi:10.1088/1752-7155/7/3/036002 (8 pp)

    Article  Google Scholar 

  • Pinto MM, Santos NF, Amaral A (2010) Current status of biodosimetry based on standard cytogenetic methods. Radiat Environ Bioph 49:567–581

    Article  Google Scholar 

  • Rana S, Kumar R, Sultana S, Sharma RK (2010) Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses. J Pharm Bioallied Sci 2:189–196

    Article  Google Scholar 

  • Rea ME, Gougelet RM, Nicolalde RJ, Geiling JA, Swartz HM (2010) Proposed triage categories for large-scale radiation incidents using high-accuracy biodosimetry methods. Health Phys 98:136–144

    Article  Google Scholar 

  • Romm H, Wilkins RC, Coleman CN, Lillis-Hearne PK, Pellmar TC, Livingston GK, Awa AA, Jenkins MS, Yoshida MA, Oestreicher U, Prasanna PG (2011) Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties. Radiat Res 175:397–404

    Article  Google Scholar 

  • Romm H, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Franco M, Herodin F, Jones A, Kulka U, Lista F, Martigne P, Moquet J, Oestreicher U, Rothkamm K, Thierens H, Valente M, Vandersickel V, Vral A, Braselmann H, Meineke V, Abend M, Beinke C (2013) Nato biodosimetry study: laboratory intercomparison of the cytokinesis-block micronucleus assay. Radiat Res 180:120–128

    Article  Google Scholar 

  • Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M (2013) Comparison of established and emerging biodosimetry assays. Radiat Res 180:111–119

    Article  Google Scholar 

  • Sholom S, Chumak V (2010) EPR emergency dosimetry with plastic components of personal goods. Health Phys 98:395–399

    Google Scholar 

  • Sholom S, DeWitt R, Simon S, Bouville A, McKeever S (2011) Emergency optically stimulated luminescence dosimetry using different materials. Radiat Meas 46:1866–1869

    Article  Google Scholar 

  • Swartz HM, Burke G, Coey M, Demidenko E, Dong R, Grinberg O, Hilton J, Iwasaki A, Lesniewski P, Kmiec M, Lo K, Nicolalde RJ, Ruuge A, Sakata Y, Sucheta A, Walczak T, Williams BB, Mitchell CA, Romanyukha A, Schauer DA (2007) In vivo EPR for dosimetry. Radiat Meas 42:1075–1084

    Article  Google Scholar 

  • Swartz HM, Flood AB, Gougelet RM, Rea ME, Nicolalde RJ, Williams BB (2010) A critical assessment of biodosimetry methods for large-scale incidents. Health Phys 98:95–108

    Article  Google Scholar 

  • Swartz HM, Williams BB, Nicolalde RJ, Demidenko E, Flood AB (2011) Overview of biodosimetry for management of unplanned exposures to ionizing radiation. Radiat Meas 46:742–748

    Article  Google Scholar 

  • Symons MC, Chandra H, Wyatt JL (1995) Electron paramagnetic resonance spectra of irradiated finger-nails: a possible measure of accidental exposure. Radiat Prot Dosim 58:11–15

    Google Scholar 

  • Trompier F, Romanyukha A, Kornak L, Calas C, LeBlanc B, Mitchell C, Swartz H, Clairand I (2009) Electron paramagnetic resonance radiation dosimetry in fingernails. Radiat Meas 44:6–10

    Article  Google Scholar 

  • Trompier F, Bassinet C, Clairand I (2010) Radiation accident dosimetry on plastics by EPR spectrometry. Health Phys 98:388–394

    Article  Google Scholar 

  • Trompier F, Bassinet C, Della Monaca S, Romanyukha A, Reyes R, Clairand I (2011) Overview of physical and biophysical techniques for accident dosimetry. Radiat Prot Dosim 144:571–574

    Article  Google Scholar 

  • Trompier F, Fattibene P, Woda C, Bassinet C, Bortolin E, De Angelis C, Della Monaca S, Viscomi D, Wieser A. (2013) Retrospective dose assessment in a radiation mass casualty by EPR and OSL in mobile phones. IRPA13 2358609 http://www.irsn.fr/EN/Research/publications-documentation/Publications/DRPH/Documents/2358609%20TROMPIER%20papier.pdf. (Accessed 28 Oct 2013)

  • Turner HC, Brenner DJ, Chen Y, Bertucci A, Zhang J, Wang H, Lyulko OV, Xu Y, Shuryak I, Schaefer J, Simaan N, Randers-Pehrson G, Yao YL, Amundson SA, Garty G (2011) Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1 technological aspects. Radiat Res 175:282–290

    Article  Google Scholar 

  • US Department of Health & Human Services (2013) Radiation emergency medical management (REMM). Dose estimator for exposure: 3 biodosimetry Tools. http://www.remm.nlm.gov/ars_wbd.htm. (Accessed 28 Oct 2013)

  • Vaurijoux A, Gruel G, Pouzoulet F, Gregoire E, Martin C, Roch-Lefevre S, Voisin P, Voisin P, Roy L (2009) Strategy for population triage based on dicentric analysis. Radiat Res 171:541–548

    Article  Google Scholar 

  • Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, Dainiak N, Strategic National Stockpile Radiation (2004) Working group medical management of the acute radiation syndrome: recommendations of the strategic national stockpile radiation working group. Ann Intern Med 140:1037–1051

    Article  Google Scholar 

  • Williams BB, Dong R, Flood AB, Grinberg O, Kmiec M, Lesniewski PN, Matthews TP, Nicolalde RJ, Raynolds T, Salikhov I, Swartz HM (2011) A deployable in vivo EPR tooth dosimeter for triage after a radiation event involving large populations. Radiat Meas 46:772–777

    Article  Google Scholar 

  • Wojcik A, Lloyd D, Romm H, Roy L (2010) Biological dosimetry for triage of casualties in a large-scale radiological emergency: capacity of the EU member states. Radiat Prot Dosim 138:397–401

    Article  Google Scholar 

  • Yordanov ND, Gancheva V, Georgieva E (2002) EPR and UV spectroscopic study of table sugar as a high-dose dosimeter. Radiat Phys Chem 65:269–276

    Article  ADS  Google Scholar 

  • Yukihara EG, Mittani J, McKeever SWS, Simon SL (2007) Optically stimulated luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure. Radiat Meas 42:1256–1260

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by a grant from NIH (U19-AI-91173). EPR tooth dosimetry was performed as part of contract HHSO100201100024C with the Biomedical Advanced Research and Development Authority (BARDA), within the Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold M. Swartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, H.M., Williams, B.B. & Flood, A.B. Overview of the principles and practice of biodosimetry. Radiat Environ Biophys 53, 221–232 (2014). https://doi.org/10.1007/s00411-014-0522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-014-0522-0

Keywords

Navigation