Skip to main content

Advertisement

Log in

Implementations of 3D printing in ophthalmology

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this paper is to provide an in-depth understanding of how to best utilize 3D printing in medicine, and more particularly in ophthalmology in order to enhance the clinicians’ ability to provide out-of-the-box solutions for unusual challenges that require patient personalization. In this review, we discuss the main applications of 3D printing for diseases of the anterior and posterior segments of the eye and discuss their current status and implementation. We aim to raise awareness among ophthalmologists and report current and future developments.

Methods

A computerized search from inception up to 2018 of the online electronic database PubMed was performed, using the following search strings: “3D,” “printing,” “ophthalmology,” and “bioprinting.” Additional data was extracted from relevant websites. The reference list in each relevant article was analyzed for additional relevant publications.

Results

3D printing first appeared three decades ago. Nevertheless, the implementation and utilization of this technology in healthcare became prominent only in the last 5 years. 3D printing applications in ophthalmology are vast, including organ fabrication, medical devices, production of customized prosthetics, patient-tailored implants, and production of anatomical models for surgical planning and educational purposes.

Conclusions

The potential applications of 3D printing in ophthalmology are extensive. 3D printing enables cost-effective design and production of instruments that aid in early detection of common ocular conditions, diagnostic and therapeutic devices built specifically for individual patients, 3D-printed contact lenses and intraocular implants, models that assist in surgery planning and improve patient and medical staff education, and more. Advances in bioprinting appears to be the future of 3D printing in healthcare in general, and in ophthalmology in particular, with the emerging possibility of printing viable tissues and ultimately the creation of a functioning cornea, and later retina. It is expected that the various applications of 3D printing in ophthalmology will become part of mainstream medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen J (2018) Disruptive Technology. Investopedia. https://www.investopedia.com/terms/d/disruptive-technology.asp. Accessed 28 Feb 2019

  2. Kodama H (1981) A scheme for three-dimensional display by automatic fabrication of three-dimensional model. IEICE Trans Electron 237–241

  3. Alexandra P (2017) The complete guide to stereolithography (SLA) in 3D printing. 3Dnatives. https://www.3dnatives.com/en/stereolithography-explained100420174/. Accessed 28 Feb 2019

  4. Mendoza HR (2015) Alain Le Méhauté, the man who submitted patent for SLA 3D printing before Chuck Hull. 3DPrint.com. https://3dprint.com/65466/reflections-alain-le-mehaute/. Accessed 28 Feb 2019

  5. Freedman D (2011) Layer by layer. MIT Technol. Rev https://www.technologyreview.com/s/426391/layer-by-layer/. Accessed 28 Feb 2019

  6. Dodziuk H (2016) Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 13:283–293. https://doi.org/10.5114/kitp.2016.62625

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langnau L (2016) How to determine 3D printing speed. Make Parts Fast. Digit. Netw. https://www.makepartsfast.com/determine-3d-printing-speed. Accessed 28 Feb 2019

  8. Mankovich NJ, Cheeseman AM, Stoker NG (1990) The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 3:200–203. https://doi.org/10.1007/BF03167610

    Article  CAS  PubMed  Google Scholar 

  9. Eppley BL, Sadove AM (1998) Computer-generated patient models for reconstruction of cranial and facial deformities. J Craniofac Surg 9:548–556

    Article  CAS  PubMed  Google Scholar 

  10. Pucci JU, Christophe BR, Sisti JA, Connolly ESJ (2017) Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35:521–529. https://doi.org/10.1016/j.biotechadv.2017.05.007

    Article  PubMed  Google Scholar 

  11. Zhong N, Zhao X (2017) 3D printing for clinical application in otorhinolaryngology. Eur Arch Otorhinolaryngol 274:4079–4089. https://doi.org/10.1007/s00405-017-4743-0

    Article  PubMed  Google Scholar 

  12. Abudayyeh I, Gordon B, Ansari MM et al (2018) A practical guide to cardiovascular 3D printing in clinical practice: overview and examples. J Interv Cardiol 31:375–383. https://doi.org/10.1111/joic.12446

    Article  PubMed  Google Scholar 

  13. Cheng GZ, San Jose Estepar R, Folch E et al (2016) Three-dimensional printing and 3D slicer: powerful tools in understanding and treating structural lung disease. Chest 149:1136–1142. https://doi.org/10.1016/j.chest.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soon DSC, Chae MP, Pilgrim CHC et al (2016) 3D haptic modelling for preoperative planning of hepatic resection: a systematic review. Ann Med Surg 10:1–7. https://doi.org/10.1016/j.amsu.2016.07.002

    Article  Google Scholar 

  15. Liu Z-J, Jia J, Zhang Y-G et al (2017) Internal fixation of complicated acetabular fractures directed by preoperative surgery with 3D printing models. Orthop Surg 9:257–260. https://doi.org/10.1111/os.12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jastifer JR, Gustafson PA (2017) Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery. J Foot Ankle Surg 56:191–195. https://doi.org/10.1053/j.jfas.2016.01.052

    Article  PubMed  Google Scholar 

  17. Zopf DA, Hollister SJ, Nelson ME et al (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045

    Article  CAS  PubMed  Google Scholar 

  18. Kite-Powell J (2014) Peking University implants first 3D printed vertebra. Forbes. https://www.forbes.com/sites/jenniferhicks/2014/08/19/peking-university-implants-first-3d-printed-vertebra/#7110c5c722c9. Accesed 28 Feb 2019

  19. Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246. https://doi.org/10.1016/S0140-6736(06)68438-9

    Article  PubMed  Google Scholar 

  20. Bhatt A, Anbarasu A (2017) Nanoscale biomaterials for 3D printing. IOSR J Pharm Biol Sci 12:80–86. https://doi.org/10.9790/3008-1203068086

    Article  Google Scholar 

  21. Malinauskas M, Rekštytė S, Lukoševičius L et al (2014) 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5:839–858. https://doi.org/10.3390/mi5040839

    Article  Google Scholar 

  22. Bishop ES, Mostafa S, Pakvasa M et al (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 4:185–195. https://doi.org/10.1016/j.gendis.2017.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. American Transplant Foundation (2018) 15 myths and concerns about living donation. Am. Transpl. Found. https://www.americantransplantfoundation.org/. Accessed 28 Feb 2019

  24. Gain P, Jullienne R, He Z et al (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134:167–173. https://doi.org/10.1001/jamaophthalmol.2015.4776

    Article  PubMed  Google Scholar 

  25. Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193. https://doi.org/10.1016/j.exer.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saunders S (2017) Biomedical research team in Spain working on 3D printed corneas to make up for lack of donors. 3DPrint.com. https://www.3dprint.com/184469/spain-3d-printed-cornea-project/. Accessed 28 Feb 2019

  27. Woodley M (2017) Kiwi scientists 3D print corneas from fish scales. Insight. http://www.insightnews.com.au/Article3/1330/Kiwi-scientists-3D-print-corneas-from-fish-scales. Accessed 28 Feb 2019

  28. Gibney R, Matthyssen S, Patterson J et al (2017) The human cornea as a model tissue for additive biomanufacturing: a review. Procedia CIRP 65:56–63. https://doi.org/10.1016/j.procir.2017.04.040

    Article  Google Scholar 

  29. Biazar E, Najafi SM, Heidari KS et al (2018) 3D bio-printing technology for body tissues and organs regeneration. J Med Eng Technol 42:187–202. https://doi.org/10.1080/03091902.2018.1457094

    Article  PubMed  Google Scholar 

  30. Ludwig PE, Huff TJ, Zuniga JM (2018) The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 9:204173141876986. https://doi.org/10.1177/2041731418769863

    Article  CAS  Google Scholar 

  31. Venugopal A, Rathi H, Rengappa R et al (2016) Outcomes after Auro Keratoprosthesis implantation: a low-cost design based on the Boston Keratoprosthesis. Cornea 35:1285–1288. https://doi.org/10.1097/ICO.0000000000000936

    Article  PubMed  Google Scholar 

  32. Bassnett S, Shi Y, Vrensen GFJM (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond Ser B Biol Sci 366:1250–1264. https://doi.org/10.1098/rstb.2010.0302

    Article  Google Scholar 

  33. Hejtmancik JF, Shiels A (2015) Overview of the Lens. Prog Mol Biol Transl Sci 134:119–127. https://doi.org/10.1016/bs.pmbts.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Donaldson PJ, Grey AC, Maceo Heilman B et al (2017) The physiological optics of the lens. Prog Retin Eye Res 56:e1–e24. https://doi.org/10.1016/j.preteyeres.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  35. Debellemanière G, Flores M, Montard M et al (2016) Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives. J Refract Surg 32:201–204. https://doi.org/10.3928/1081597X-20160121-05

    Article  PubMed  Google Scholar 

  36. Canabrava S, Diniz-Filho A, Schor P, Fagundes DF, Lopes A, Batista WD (2015) Production of an intraocular device using 3D printing: an innovative technology for ophthalmology. Arq Bras Oftalmol 78:393–394

    Article  PubMed  Google Scholar 

  37. Choi SW, Kwon HJ, Song WK (2018) Three-dimensional printing using open source software and JPEG images from optical coherence tomography of an epiretinal membrane patient. Acta Ophthalmol 399–402. https://doi.org/10.1111/aos.13179

  38. Maloca PM, Spaide RF, Rothenbuehler S et al (2017) Enhanced resolution and speckle-free three-dimensional printing of macular optical coherence tomography angiography. Acta Ophthalmol 1–3. https://doi.org/10.1111/aos.13567

  39. Maloca PM, Tufail A, Hasler PW et al (2017) 3D printing of the choroidal vessels and tumours based on optical coherence tomography. Acta Ophthalmol 1–4. https://doi.org/10.1111/aos.13637

  40. Lorber B, Hsiao WK, Martin KR (2016) Three-dimensional printing of the retina. Curr Opin Ophthalmol 27:262–267. https://doi.org/10.1097/ICU.0000000000000252

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ruiters S, Sun Y, De Jong S et al (2016) Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. Br J Ophthalmol 100:879–881. https://doi.org/10.1136/bjophthalmol-2016-308399

    Article  PubMed  Google Scholar 

  42. Dave TV, Tiple S, Vempati S et al (2018) Low-cost three-dimensional printed orbital template-assisted patient-specific implants for the correction of spherical orbital implant migration. Indian J Ophthalmol 66:1600–1607. https://doi.org/10.4103/ijo.IJO_472_18

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan B, Chen H, Sun YJ et al (2017) Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures. Graefes Arch Clin Exp Ophthalmol 255:2051–2057. https://doi.org/10.1007/s00417-017-3766-y

    Article  PubMed  Google Scholar 

  44. Callahan AB, Campbell AA, Petris C, Kazim M (2017) Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthal Plast Reconstr Surg 33:376–380. https://doi.org/10.1097/IOP.0000000000000884

    Article  PubMed  Google Scholar 

  45. Furdová A, Sramka M, Thurzo A, Furdová A (2017) Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas. Clin Ophthalmol 11:267–271. https://doi.org/10.2147/OPTH.S123640

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bannon R, Parihar S, Skarparis Y et al (2018) 3D printing the pterygopalatine fossa: a negative space model of a complex structure. Surg Radiol Anat 40:185–191. https://doi.org/10.1007/s00276-017-1916-x

    Article  PubMed  Google Scholar 

  47. Adams JW, Paxton L, Dawes K et al (2015) 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry. Br J Ophthalmol 99:1162–1167. https://doi.org/10.1136/bjophthalmol-2014-306189

    Article  PubMed  Google Scholar 

  48. Scawn RL, Foster A, Lee BW et al (2015) Customised 3D printing: an innovative training tool for the next generation of orbital surgeons. Orbit 34:216–219. https://doi.org/10.3109/01676830.2015.1049367

    Article  PubMed  Google Scholar 

  49. Ayyildiz O (2018) Customised spectacles using 3-D printing technology. Clin Exp Optom 1–5. https://doi.org/10.1111/cxo.12795

  50. Zhao F, Zhao G, Weijie F, Chen L (2018) Application of 3D printing technology in RGPCL simulation fitting. Med Hypotheses 113:74–76. https://doi.org/10.1016/j.mehy.2018.02.028

    Article  PubMed  Google Scholar 

  51. Saunders S (2017) Johnson & Johnson announces new collaborations to develop biomedical innovation and advance 3D printing technology in healthcare. 3DPrint.com. https://www.3dprint.com/178341/johnson-johnson-collaboration/. Accessed 28 Feb 2019

  52. Sun MG, Rojdamrongratana D, Rosenblatt MI et al (2018) 3D printing for low cost, rapid prototyping of eyelid crutches. Orbit 1–5. https://doi.org/10.1080/01676830.2018.1445760

  53. Navajas EV, Ten Hove M (2017) Three-dimensional printing of a transconjunctival vitrectomy trocar-cannula system. Ophthalmologica 237:119–122. https://doi.org/10.1159/000457807

    Article  CAS  PubMed  Google Scholar 

  54. Hong SC (2015) 3D printing and ophthalmology for the community. J Cytol Histol 6:e116

    Google Scholar 

  55. Hong SC (2015) 3D printable retinal imaging adapter for smartphones could go global. Graefes Arch Clin Exp Ophthalmol 253:1831–1833

    Article  PubMed  Google Scholar 

  56. Saunders S (2017) Teenager uses AI, a 3D printed Lens, and a smartphone to develop portable system to diagnose a common eye disease. 3DPrint.com. https://3dprint.com/183144/portable-eye-diagnostic-system/. Accessed 28 Feb 2019

  57. Bleicher A (2017) Teenage whiz kid invents an ai system to diagnose her grandfather’s eye disease. IEEE Spectr. https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/teenage-whiz-kid-invents-an-ai-system-to-diagnose-her-grandfathers-eye-disease. Accessed 28 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eytan Z. Blumenthal.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sommer, A.C., Blumenthal, E.Z. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol 257, 1815–1822 (2019). https://doi.org/10.1007/s00417-019-04312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04312-3

Keywords

Navigation