Skip to main content
Log in

No differences in dual-task costs between forced- and free-choice tasks

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Humans appear to act in response to environmental demands or to pursue self-chosen goals. In the laboratory, these situations are often investigated with forced- and free-choice tasks: in forced-choice tasks, a stimulus determines the one correct response, while in free-choice tasks the participants choose between response alternatives. We compared these two tasks regarding their susceptibility to dual-task interference when the concurrent task was always forced-choice. If, as was suggested in the literature, both tasks require different “action control systems,” larger dual-task costs for free-choice tasks than for forced-choice tasks should emerge in our experiments, due to a time-costly switch between the systems. In addition, forced-choice tasks have been conceived as “prepared reflexes” for which all intentional processing is said to take place already prior to stimulus onset giving rise to automatic response initiation upon stimulus onset. We report three experiments with different implementations of the forced- vs. free-choice manipulation. In all experiments we replicated slower responses in the free- than in the forced-choice task and the typical dual-task costs. These latter costs, however, were equivalent for forced- and free-choice tasks. These results are easier to reconcile with the assumption of one unitary “action control system.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In addition, the stimulus-locked lateralized readiness potential has been shown to be larger in forced-choice compared to free-choice tasks in one study (Waszak et al., 2005), but not in another (Keller et al., 2006).

  2. The term “action control systems” is still a bit vague. In our understanding, it refers to two largely different neural networks responsible for carrying out one action type or the other. When referring to this literature, we will, however, continue to use the term “system” although our data does not speak to the neural substrates.

  3. We will discuss one special case of parallel processing in the “General Discussion”.

  4. Another difference between the forced- and free-choice tasks used in Experiment 1 relates to the fact that the forced-choice task entailed a “consistent mapping” of stimuli and responses, while the free-choice task can be construed as entailing a “varied mapping”: to the same stimulus different responses are required. There is evidence for automatic retrieval of responses and/or tasks upon stimulus perception from the task-switching literature (e.g., Koch, Prinz, & Allport, 2005; Waszak, Hommel, & Allport, 2003), and thus the free-choice stimulus might re-activate the last response associatively and lead to increased response conflict. With the design we used in Experiment 2 and 3, this additional difference should be less pronounced.

  5. If one views forced- vs. free-choice tasks as a continuum, this particular task might be a shift toward the forced-choice pole because it requires extracting the two possible stimuli and the respective responses. Still, however, it requires a “free-choice” between the two possible responses.

  6. Against this background, it should be noted again that the simplified (and theoretical) distinction we have made here by contrasting stimulus- and goal-driven actions does not imply “real”, conceptual differences—the interpretation made here even argues against it. Rather, this terminology should only highlight the aspect that determines the accuracy or appropriateness of the emitted action. As both require at least an intention-in-action, the term “intention-based” to characterize only actions operationalized by free-choice tasks (Herwig et al., 2007; Keller et al., 2006; Waszak et al., 2005) is thus incomplete and potentially misleading.

References

  • Astor-Jack, T., & Haggard, P. (2004). Intention and reactivity. In G. W. Humphreys & J. M. Riddoch (Eds.), Attention in action: Advances from cognitive neuroscience (pp. 109–130). Hove: Psychology Press.

    Google Scholar 

  • Baddeley, A. (2007). Working memory, thought, and action. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Berlyne, D. E. (1957a). Conflict and choice time. British Journal of Psychology, 48, 106–118.

    Article  PubMed  Google Scholar 

  • Berlyne, D. E. (1957b). Uncertainty and conflict: A point of contact between information-theory and behavior-theory concepts. Psychological Review, 64, 329–339.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    Article  PubMed  Google Scholar 

  • Brass, M., & Haggard, P. (2008). The what, when, whether model of intentional action. The Neuroscientist, 14, 319–325.

    Article  PubMed  Google Scholar 

  • Cunnington, R., Windischberger, C., Deecke, L., & Moser, E. (2003). The preparation and readiness for voluntary movement: A highfield event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage, 20, 404–412.

    Article  PubMed  Google Scholar 

  • Devaine, M., Waszak, F., & Mamassian, P. (2013). Dual process for intentional and reactive decisions. PLoS Computational Biology, 9, e1003013. doi:10.1371/journal.pcbi.1003013.

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.

    PubMed  Google Scholar 

  • Fleming, S. M., Mars, R. B., Gladwin, T. E., & Haggard, P. (2009). When the brain changes its mind: Flexibility of action selection in instructed and free choices. Cerebral Cortex, 19, 2352–2360.

    Article  PubMed Central  PubMed  Google Scholar 

  • Frith, C. (2013). The psychology of volition. Experimental Brain Research, 229, 289–299.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaschler, R., & Nattkemper, D. (2012). Instructed task demands and utilization of action effect anticipation. Frontiers in Psychology, 3, 578. doi:10.3389/fpsyg.2012.00578.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences, 8, 567–588.

    Article  Google Scholar 

  • Gollwitzer, P. M. (1999). Implementation intentions. Strong effects of simple plans. American Psychologist, 54, 493–503.

    Article  Google Scholar 

  • Halvorson, K. M., Ebner, H., & Hazeltine, E. (2013). Investigating perfect timesharing: The relationship between IM-compatible tasks and dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 39, 413–432.

    PubMed  Google Scholar 

  • Harleß, E. (1861). Der Apparat des Willens [The Apparatus of Will]. Zeitschrift für Philosophie und philosophische Kritik, 38, 50–73.

    Google Scholar 

  • Hazeltine, E., Ruthruff, E., & Remington, R. W. (2006). The role of input and output modality pairings in dual-task performance: Evidence for content-dependent central interference. Cognitive Psychology, 52, 291–345.

    Article  PubMed  Google Scholar 

  • Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik [Psychology as a science newly founded on experience, metaphysics, and mathematics]. Königsberg: August Wilhelm Unzer.

    Google Scholar 

  • Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. Quarterly Journal of Experimental Psychology, 60, 1540–1554.

    Article  Google Scholar 

  • Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. The Quarterly Journal of Experimental Psychology, 62, 219–227.

    Article  PubMed  Google Scholar 

  • Herwig, A., & Waszak, F. (2012). Action-effect bindings and ideomotor learning in intention- and stimulus-based actions. Frontiers in Psychology, 3, 444. doi:10.3389/fpsyg.2012.00444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus-response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: attention and performance XVIII (pp. 247–273). Cambridge: MIT Press.

    Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.

    Article  PubMed  Google Scholar 

  • Hughes, G., Schütz-Bosbach, S., & Waszak, F. (2011). One action system or two? Evidence for common central preparatory mechanisms in voluntary and stimulus-driven actions. The Journal of Neuroscience, 31, 16692–16699.

    Article  PubMed  Google Scholar 

  • Jahanshahi, M., Dirnberger, G., Fuller, R., & Frith, CD. (2000). The role of the dorsolateral prefrontal cortex in random number generation: A study with positron emission tomography. Neuroimage, 12, 713–725.

  • Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E., & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.

    Article  PubMed  Google Scholar 

  • James, W. (1890/1981). The principles of psychology (vol. 2). Cambridge: Harvard University Press.

  • Janczyk, M. (2013). Level 2 perspective taking entails two processes: Evidence from PRP experiments. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39, 1878–1887.

    Article  PubMed  Google Scholar 

  • Janczyk, M., Dambacher, M., Bieleke, M., & Gollwitzer, P. M. (2014). The benefit of no choice: Goal-directed plans enhance perceptual processing. Psychological Research. doi:10.1007/s00426-014-0549-5.

    Google Scholar 

  • Janczyk, M., Heinemann, A., & Pfister, R. (2012). Instant attraction: Immediate action-effect bindings occur for both, stimulus- and goal-driven actions. Frontiers in Psychology, 3, 446. doi:10.3389/fpsyg.2012.00446.

    Article  PubMed Central  PubMed  Google Scholar 

  • Janczyk, M., & Kunde, W. (2014). The role of effect grouping in free-choice response selection. Acta Psychologica, 150, 49–54.

    Article  PubMed  Google Scholar 

  • Janczyk, M., Pfister, R., Crognale, M. A., & Kunde, W. (2012). Effective rotations: Action effects determine the interplay of mental and manual rotations. Journal of Experimental Psychology: General, 141, 489–501.

    Article  Google Scholar 

  • Janczyk, M., Pfister, R., Hommel, B., & Kunde, W. (2014). Who is talking in backward crosstalk? Disentangling response- from goal-conflict in dual-task performance. Cognition, 132, 30–43.

    Article  PubMed  Google Scholar 

  • Janczyk, M., Pfister, R., & Kunde, W. (2012). On the persistence of tool-based compatibility effects. Journal of Psychology, 220, 16–22.

    Google Scholar 

  • Janczyk, M., Pfister, R., Wallmeier, G., & Kunde, W. (2014). Exceptions to the PRP effect? A comparison of prepared and unconditioned reflexes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 776–786.

    PubMed  Google Scholar 

  • Janczyk, M., Skirde, S., Weigelt, M., & Kunde, W. (2009). Visual and tactile action effects determine bimanual coordination performance. Human Movement Science, 28, 437–449.

    Article  PubMed  Google Scholar 

  • Keller, P. E., Wascher, E., Prinz, W., Waszak, F., Koch, I., & Rosenbaum, D. A. (2006). Differences between intention-based and stimulus-based actions. Journal of Psychophysiology, 20, 9–20.

    Article  Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., et al. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136, 849–874.

    Article  PubMed  Google Scholar 

  • Koch, I., Prinz, W., & Allport, A. (2005). Involuntary retrieval in alphabetic-arithmetic tasks: Task-mixing and task-switching costs. Psychological Research, 69, 252–261.

    Article  PubMed  Google Scholar 

  • Krieghoff, V., Brass, M., Prinz, W., & Waszak, F. (2009). Dissociating what and when of intentional actions. Frontiers in Human Neuroscience, 3, 3. doi:10.3389/neuro.09.003.2009.

  • Kühn, S., Elsner, B., Prinz, W., & Brass, M. (2009). Busy doing nothing: Evidence for nonaction-effect binding. Psychonomic Bulletin and Review, 16, 542–549.

    Article  PubMed  Google Scholar 

  • Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.

    PubMed  Google Scholar 

  • Kunde, W., Pfister, R., & Janczyk, M. (2012). The locus of tool-transformation costs. Journal of Experimental Psychology: Human Perception and Performance, 38, 703–714.

    PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.

    Article  PubMed  Google Scholar 

  • Lotze, H. R. (1852). Medicinische Psychologie oder Physiologie der Seele [Medical psychology or the physiology of the mind]. Leipzig: Weidmann’sche Buchhandlung.

    Google Scholar 

  • Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis testing. Behavior Research Methods, 43, 679–690.

    Article  PubMed  Google Scholar 

  • Mattler, U., & Palmer, S. (2012). Time course of free-choice priming effects explained by a simple accumulator model. Cognition, 123, 347–360.

  • Metzker, M., & Dreisbach, G. (2009). Bidirectional priming processes in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 35, 1770–1783.

    PubMed  Google Scholar 

  • Miller, J., & Reynolds, A. (2003). The locus of redundant-targets and non-targets effects: Evidence from the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.

    PubMed  Google Scholar 

  • Miller, J., Rolke, B., & Ulrich, R. (2009). On the optimality of serial and parallel processing in the psychological refractory period paradigm: Effects of the distribution of stimulus onset asynchronies. Cognitive Psychology, 58, 273–310.

    Article  PubMed  Google Scholar 

  • Müller, V., Brass, M., Waszak, F., & Prinz, W. (2007). The role of the preSMA and the rostral cingulate zone in internally selected actions. Neuroimage, 37, 1354–1361.

    Article  Google Scholar 

  • Nachev, P., & Husain, M. (2010). Action and the fallacy of ‘internal’: Comment on Passingham et al. Trends in Cognitive Sciences, 14, 192–193.

    Article  PubMed  Google Scholar 

  • Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.

    Article  PubMed  Google Scholar 

  • Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55, 601–626.

    Article  Google Scholar 

  • Obhi, S. S., & Haggard, P. (2004). Internally and externally triggered actions are physically distinct and independently controlled. Experimental Brain Research, 156, 518–523.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244.

    Article  PubMed  Google Scholar 

  • Passingham, R. E., Bengtsson, S. L., & Lau, H. C. (2010a). Medial frontal cortex: From self-generated action to reflection on one’s own performance. Trends in Cognitive Sciences, 14, 16–21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Passingham, R. E., Bengtsson, S. L., & Lau, H. C. (2010b). Is it fallacious to talk of self-generated action? Response to Nachev and Husain. Trends in Cognitive Sciences, 14, 193–194.

    Article  Google Scholar 

  • Pfister, R., & Janczyk, M. (2012). Harleß’ apparatus of will: 150 years later. Psychological Research, 76, 561–565.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfister, R., & Janczyk, M. (2013). Confidence intervals for two sample means: Calculation, interpretation, and a few simple rules. Advances in Cognitive Psychology, 9, 74–80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: Action-effect learning for stimulus-based actions. Psychological Research, 75, 61–65.

    Article  PubMed  Google Scholar 

  • Pfister, R., Kiesel, A., & Melcher, T. (2010). Adaptive control of ideomotor effect anticipations. Acta Psychologica, 135, 316–322.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1998). Die Reaktion als Willenshandlung [Responses considered as voluntary actions]. Psychologische Rundschau, 49, 10–20.

    Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Marsden (Ed.), Sociological methodology (pp. 111–196). Cambridge: Blackwell.

    Google Scholar 

  • Rowe, J. B., Hughes, L., & Nimmo-Smith, L. (2010). Action selection: A race model for selected and non-selected actions distinguishes the contribution of premotor and prefrontal areas. Neuroimage, 51, 888–896.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schüür, F., & Haggard, P. (2011). What are self-generated actions? Consciousness and Cognition, 20, 1697–1704.

    Article  PubMed  Google Scholar 

  • Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a stroop task. Journal of Mathematical Psychology, 18, 105–139.

    Article  Google Scholar 

  • Searle, J. R. (1980). The intentionality of intention and action. Cognitive Science, 4, 47–70.

    Article  Google Scholar 

  • Searle, J. R. (1983). Intentionality. An essay in the philosophy of mind. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276–315.

  • Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188.

  • Verleger, R., Jaskowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19, 165–181.

    Article  Google Scholar 

  • Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin and Review, 14, 779–804.

    Article  PubMed  Google Scholar 

  • Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic S-R-bindings in task-switch costs. Cognitive Psychology, 46, 361–413.

    Article  PubMed  Google Scholar 

  • Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D. A., et al. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346–356.

    Article  PubMed  Google Scholar 

  • Wiese, H., Stude, P., Nebel, K., de Greiff, A., Forsting, M., Diener, H. C., et al. (2004). Movement preparation in self-initiated versus externally triggered movements: An event-related fMRI-study. Neuroscience Letters, 371, 220–225.

    Article  PubMed  Google Scholar 

  • Wolfensteller, U., & Ruge, H. (2011). On the timescale of stimulus-based action-effect learning. Quarterly Journal of Experimental Psychology, 64, 1273–1289.

    Article  Google Scholar 

  • Woodworth, R. S. (1938). Experimental psychology. New York: Holt, Rinehart and Wilston.

    Google Scholar 

Download references

Acknowledgment

This research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Council), Project JA 2307/1-1, awarded to Markus Janczyk. We thank Iring Koch and an anonymous reviewer for valuable comments and suggestions on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Janczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janczyk, M., Nolden, S. & Jolicoeur, P. No differences in dual-task costs between forced- and free-choice tasks. Psychological Research 79, 463–477 (2015). https://doi.org/10.1007/s00426-014-0580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0580-6

Keywords

Navigation