Skip to main content

Advertisement

Log in

Vascularization of engineered cartilage constructs in a mouse model

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tissue engineering of cartilage tissue offers a promising method for reconstructing ear, nose, larynx and trachea defects. However, a lack of sufficient nutrient supply to cartilage constructs limits this procedure. Only a few animal models exist to vascularize the seeded scaffolds. In this study, polycaprolactone (PCL)-based polyurethane scaffolds are seeded with 1 × 106 human cartilage cells and implanted in the right hind leg of a nude mouse using an arteriovenous flow-through vessel loop for angiogenesis for the first 3 weeks. Equally seeded scaffolds but without access to a vessel loop served as controls. After 3 weeks, a transposition of the vascularized scaffolds into the groin of the nude mouse was performed. Constructs (verum and controls) were explanted 1 and 6 weeks after transposition. Constructs with implanted vessels were well vascularized. The amount of cells increased in vascularized constructs compared to the controls but at the same time noticeably less extracellular matrix was produced. This mouse model provides critical answers to important questions concerning the vascularization of engineered tissue, which offers a viable option for repairing defects, especially when the desired amount of autologous cartilage or other tissues is not available and the nutritive situation at the implantation site is poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek CH, Ko YJ (2006) Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope 116:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Cronin KJ, Messina A, Knight KR, Cooper-White JJ, Stevens GW, Penington AJ, Morrison WA (2004) New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast Reconstr Surg 113:260–269

    Article  PubMed  Google Scholar 

  • Eyrich D, Wiese H, Maier G, Skodacek D, Appel B, Sarhan H, Tessmar J, Staudenmaier R, Wenzel MM, Goepferich A, Blunk T (2007) In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng 13:2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J (1994) Composition of cell-polymer cartilage implants. Biotechnol Bioeng 43:605–614

    Article  CAS  PubMed  Google Scholar 

  • Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M (2003a) The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 24:5163–5171

    Article  CAS  PubMed  Google Scholar 

  • Grad S, Zhou L, Gogolewski S, Aini M (2003b) Chondrocytes seeded onto poly (L/DL-lactide) 80 %/20% porous scaffolds: a biochemical evaluation. J Biomed Mater Res 66:571–579

    Article  Google Scholar 

  • Hirase Y, Valauri FA, Buncke HJ (1988) Prefabricated sensate myocutaneus and osteomyocutaneous free flaps: an experimental model. Preliminary report. Plast Reconstr Surg 82:440–446

    Article  CAS  PubMed  Google Scholar 

  • Hoang NT, Kloeppel M, Staudenmaier R, Werner J, Biemer E (2005a) Prefabrication of large fasciocutaneus flaps using an isolated arterialised vein as implanted vascular pedicle. Br J Plast Surg 58:632–639

    Article  PubMed  Google Scholar 

  • Hoang NT, Kloeppel M, Staudenmaier R, Schweinbeck S, Biemer E (2005b) Neovascularization in prefabricated flaps using a tissue expander and an implanted arteriovenous pedicle. Microsurgery 25:213–219

    Article  Google Scholar 

  • Hoang NT, Hoehnke C, Hien PT, Mandlik V, Feucht A, Staudenmaier R (2009) Neovascularization and free microsurgical transfer of in vitro cartilage-engineered constructs. Microsurgery 29:52–61

    Article  PubMed  Google Scholar 

  • Huang CY, Reuben PM, D’Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A 278:428–436

    Article  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y (1992) An experimental study of prefabricated flaps using silicone sheets, with reference to the vascular patternization process. Ann Plast Surg 28:140–146

    Article  CAS  PubMed  Google Scholar 

  • Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K (2003) Effekts of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Organs 27:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kamil SH, Kojima K, Vacanti MP, Zaparojan V, Vacanti CA, Eavey RD (2007) Tissue engineered cartilage: utilization of autologous serum and serum-free media for chondrocyte culture. Int J Pediatr Otorhinolaryngol 71:71–75

    Article  CAS  PubMed  Google Scholar 

  • Khouri RK, Koudsi B, Deune EG (1993) Tissue generation with growth factors. Surgery 114:374–379

    CAS  PubMed  Google Scholar 

  • Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using hoechst 33258. Anal Biochem 174:168–176

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S (2005) Engineering blood vessels from stem cells: recent advances and applications. Curr Opin Biotechnol 16:516–523

    Article  CAS  PubMed  Google Scholar 

  • Morrison WA, Dvir E, Doi K, Hurley JV, Hickey MJ, O’Brien BM (1990) Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits. Br J Plast Surg 43:645–654

    Article  CAS  PubMed  Google Scholar 

  • Morrison WA, Penington AJ, Kumta SK, Callan P (1997) Clinical applications and technical limitations of prefabricated flaps. Plast Reconstr Surg 99:378–385

    Article  CAS  PubMed  Google Scholar 

  • Mueller FA, Mueller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    Article  CAS  Google Scholar 

  • Neumeister MW, Wu T, Chambers C (2006) Vascularized tissue-engineered ears. Plast Reconstr Surg 117:116–122

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Kloeppel M, Staudenmaier R, Werner J, Biemer E (2005) Study of the neovascularisation of prefabricated flaps using a silicone sheet and an isolated arterial pedicle: experimental study in rabbits. Scand J Plast Reconstr Surg Hand Surg 39:326–333

    Article  PubMed  Google Scholar 

  • Nomi M, Atala A, De Coppi P, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Asp Med 23:463–483

    Article  CAS  Google Scholar 

  • Pribaz JJ, Fine NA (1994) Prelamination: defining the prefabricated flap – a case report and review. Microsurgery 15:618–623

    Article  CAS  PubMed  Google Scholar 

  • Pribaz JJ, Fine NA (2001) Prefabricated and prelaminated flaps for head and neck reconstruction. Clin Plast Surg 28:261–272

    CAS  PubMed  Google Scholar 

  • Sahoo S, Ang LT, Goh JC, Toh SL (2010) Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res 93:1539–1550

    Google Scholar 

  • Shen TY (1982) Microvascular transplantation of prefabricated free thigh flap (letter). Plast Reconstr Surg 69:568

    Google Scholar 

  • Staudenmaier R, Hoang TN, Kleinsasser N, Schurr C, Frölich K, Wenzel MM, Aigner J (2004) Flap prefabrication and prelamination with tissue-engineered cartilage. J Reconstr Microsurg 20:555–564

    Article  PubMed  Google Scholar 

  • Takato T, Komuro Y, Yonehara H, Zuker RM (1993) Prefabricated venous flaps: an experimental study in rabbits. Br J Plast Surg 46:122–126

    Article  CAS  PubMed  Google Scholar 

  • Tan BK, Chen HC, He TM, Song IC (2004) Flap prefabrication - The bridge between conventional flaps and tissue-engineered flaps. Ann Acad Med 33:662–666

    CAS  Google Scholar 

  • Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA (2003) Tissue engineering skin flaps: Which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 112:1626–1644

    Google Scholar 

  • Wiggenhauser PS, Müller DF, Melchels FPW, Egana JT, Storck K, Mayer H, Leuthner P, Skodacek D, Hopfner U, Machens HG, Staudenmaier R, Schantz JT (2012) Engineering of vascularized adipose constructs. Cell Tissue Res 347:747–757

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Tomita N, Fukuda Y, Suzuki S, Igarashi N, Suguro T, Tamada Y (2007) Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate. Biomaterials 28:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13:1443–1453

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Burghartz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burghartz, M., Gehrke, T., Storck, K. et al. Vascularization of engineered cartilage constructs in a mouse model. Cell Tissue Res 359, 479–487 (2015). https://doi.org/10.1007/s00441-014-2026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2026-2

Keywords

Navigation