Skip to main content
Log in

Multi-stage high cell continuous fermentation for high productivity and titer

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B :

Bleed ratio (dimensionless)

D :

Dilution rate (/h), D t for MSC-HCDC system, D i for each reactor of MSC-HCDC, D f dilution rate increase by feed stream for each reactor

k d :

Specific death rate (/h)

m x :

Maintenance coefficient

P :

Product titer (g/L)

PD:

Productivity (g/L/h)

PR:

Productivity ratio (dimensionless)

Q :

Feed flow rate (main stream) (L/h)

q :

Feed flow rate (branched stream) (L/h)

qp/x,\( \overline{q} \)p/x:

Specific, average productivity of cells (g/g/h)

r P :

Product formation rate (g-product/L/h)

S :

Substrate concentration (g/L)

V :

Reactor volume (L)

w :

Volume ratio (dimensionless)

X,\( \overline{X} \):

Cell concentration, average cell concentration (g/L), X = 100 g/L (lactic acid, ethanol) and X = 40 and 60 g/L (penicillin) were used

Y :

Yield value

μ :

Specific growth rate (/h)

β :

Flow ratio of the top effluent and filtrate (dimensionless)

γ :

Filtration ratio in the cell filtering unit (dimensionless)

θ :

Cycle or residence time of fermentation system (h)

0:

Initial value

b, fb:

Batch, fed-batch system

c:

Continuous

f:

Feed stream

hcdc:

High cell-density culture

i :

Number of optional stages

j :

Number of optional stages

n :

Number of stages

t :

Total value for D, P, PD, V, Q or θ

HRT:

Hydraulic retention time

SRT:

Solid retention time

Mab:

Monoclonal antibody

C-HCDC:

Continuous high cell-density culture

SSC-HCDC:

Single-stage continuous high cell-density culture

MSC-HCDC:

Multistage continuous high cell-density culture

PHB:

Polyhydroxybutyric acid

B/FB:

Batch or fed-batch

FB:

Fed-batch

References

  1. Cooney CL (1983) Bioreactors: design and operation. Science 219:728–733

    Article  CAS  Google Scholar 

  2. Shuler ML, Kargi F (2002) Bioprocess engineering. PH PTR, New Jersey

    Google Scholar 

  3. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  Google Scholar 

  4. Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22:1–9

    Article  CAS  Google Scholar 

  5. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891

    Article  CAS  Google Scholar 

  6. Xie LZ, Wang DIC (1996) High cell density and high monoclonal antibody production medium design and rational control in a bioreactor of outstanding interest. Biotechnol Bioeng 51:725–727

    Article  CAS  Google Scholar 

  7. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  8. Lee CW, Chang HN (1987) Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol Bioeng 29:1105–1112

    Article  CAS  Google Scholar 

  9. Vick Roy TB, Blanch HW, Wilke CR (1982) Lactic acid production by Lactobacillus delbreuckii in a hollow fiber fermenter. Biotechnol Lett 4:483–488

    Article  Google Scholar 

  10. Robertson CR, Kim IH (1985) Dual aerobic hollow-fiber bioreactor for cultivation of Streptomyces aureofaciens. Biotechnol Bioeng 27:1012–1020

    Article  CAS  Google Scholar 

  11. Chung BH, Chang HN, Kim IH (1987) Rifamycin B production by Nocardia mediterranei immobilized in a dual hollow fibre bioreactor. Enzyme Microb Tech 9:345–349

    Article  CAS  Google Scholar 

  12. Deshpande RR, Heinzle E (2004) On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol Lett 26:763–767

    Article  CAS  Google Scholar 

  13. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  Google Scholar 

  14. Chang HN, Yoo IK, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotech Adv 12:467–487

    Article  CAS  Google Scholar 

  15. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc./McGraw-Hill, New York

    Google Scholar 

  16. de Gooijer CD, Bakker WAM, Beeftink HH, Tramper J (1996) Bioreactors in series: an overview of design procedures and practical applications. Enzyme Microbial Technol 18:202–219

    Article  CAS  Google Scholar 

  17. Kwon SH, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34

    Article  CAS  Google Scholar 

  18. Xu TJ, Zhao XQ, Bai FW (2005) Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme Microb Technol 37:634–640

    Article  CAS  Google Scholar 

  19. Bayrock DP, Ingledew WM (2001) Changes in steady state on introduction of a Lactobacillus contaminant to a continuous culture ethanol fermentation. J Ind Microbiol Biotechnol 27:45–87

    Google Scholar 

  20. Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88:59–65

    Article  CAS  Google Scholar 

  21. Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  CAS  Google Scholar 

  22. Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 63:105–112

    Article  CAS  Google Scholar 

  23. Judd S, Judd C (2006) The MBR book. Elsevier, Amsterdam

    Google Scholar 

  24. Williams D, Munnecke DM (1981) The production of ethanol by immobilized yeast cells. Biotechnol Bioeng 23:1813–1825

    Article  CAS  Google Scholar 

  25. Nagashima M, Azuna M, Noguchi S, Inuzuka K, Samejima H (1984) Continuous ethanol fermentation using immobilized yeast cells. Biotechnol Bioeng 26:992–997

    Article  CAS  Google Scholar 

  26. Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19:1125–1143

    Article  CAS  Google Scholar 

  27. Ghose TK, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolysate. I. Batch versus continuous systems. Biotechnol Bioeng 28:1387–1400

    Article  Google Scholar 

  28. Bulock JD, Comberbach DM, Ghommidh C (1984) Study of continuous ethanol production using a highly flocculent yeast in the gas lift tower fermenter. Chem Eng J 29:B9–B24

    Article  CAS  Google Scholar 

  29. Rogers PL, Lee KJ, Triber DE (1980) High productivity ethanol fermentations with Zymomonas mobilis. Process Biochem 15:7–11

    CAS  Google Scholar 

  30. Cheryan M, Mehaia MA (1984) Ethanol production in a membrane recycle bioreactor: conversion of glucose using Saccharomyces cerevisiae. Process Biochem 15:204–208

    Google Scholar 

  31. Hoffmann H, Kuhlmann W, Meyer HD, Schugerl K (1985) High productivity ethanol fermentations with cross-flow membrane separation. J Membr Sci 22:235–243

    Article  CAS  Google Scholar 

  32. Herbert D (1961) A theoretical analysis of continuous culture systems. Soc Chem Ind Monogr 12:21–53

    Google Scholar 

  33. Pirt SJ, Kurowski WM (1970) An extension of the theory of the chemostat with feedback of organisms. Its experimental realization with a yeast culture. J Gen Microbiol 63:357–366

    CAS  Google Scholar 

  34. Nishiwaki A, Dunn IJ (1997) Performance of a multistage fermentor with cell recycle for continuous ethanol production. Chem Eng Comm 162:179–198

    Article  CAS  Google Scholar 

  35. Deindoerfer FH, Humphrey AE (1959) Principles in the design of continuous sterilizers. Appl Environ Microbiol 7:264–270

    CAS  Google Scholar 

  36. Bayrock DP, Ingledew WM (2005) Ethanol production in multistage continuous, single stage continuous, Lactobacillus-contaminated continuous, and batch fermentations. World J Microbiol Biotechnol 21:83–88

    Article  CAS  Google Scholar 

  37. Lee JC, Kim DY, Oh DJ, Chang HN (2008) Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: effect of temperature, pH, and dissolved oxygen. Biotechnol Bioproc Eng 13:401–409

    Article  CAS  Google Scholar 

  38. Lee JC, Kim DY, Oh DJ, Chang HN (2008) Two-stage depth filter perfusion culture for recombinant antibody production by recombinant Chinese Hamster Ovary cell. Biotechnol Bioproc Eng 13:560–565

    Article  CAS  Google Scholar 

  39. Chang HN, Kim BJ, Kang JW, Jeong CM, Kim NJ, Park JK (2008) High cell density ethanol fermentation in a upflow packed-bed cell recycle bioreactor. Biotechnol Bioproc Eng 13:123–135

    Article  CAS  Google Scholar 

  40. Lee WG (1995) PhD thesis, KAIST

  41. Levenspiel O (1980) The Monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687

    Article  CAS  Google Scholar 

  42. Keller AK, Gerhardt P (1975) Continuous lactic acid fermentation of whey to produce a ruminant feed supplement high in crude protein. Biotechnol Bioeng 17:997–1018

    Article  CAS  Google Scholar 

  43. Wang H, Seki M, Furusaki S (1995) Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation. Biotechnol Prog 11:558–564

    Article  CAS  Google Scholar 

  44. Bajpai RK, Reuss M (1980) Mechanistic model for penicillin production. J Chem Technol Biotechnol 30:332–344

    Article  CAS  Google Scholar 

  45. Bajpai RK, Reuss M (1981) Evaluation of feeding strategies in carbon-regulated secondary metabolite production through mathematical modeling. Biotechnol Bioeng 23:717–738

    Article  CAS  Google Scholar 

  46. San KY, Stephanopoulos G (1989) Optimization of fed-batch penicillin fermentation: a case of singular optimal control with state constraints. Biotechnol Bioeng 34:72–78

    Article  CAS  Google Scholar 

  47. Lim HC, Tayeb YJ, Modak JM, Bonte P (1986) Computational algorithms for optimal feed rates for a class of fed-batch fermentation: numerical results for penicillin and cell mass production. Biotechnol Bioeng 28:1408–1420

    Article  CAS  Google Scholar 

  48. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63:537–542

    Article  CAS  Google Scholar 

  49. Ding S, Tan T (2005) l-lactic acid production by Lactobacillus caseifermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454

    Article  Google Scholar 

  50. Oh DJ, Choi SK, Chang HN (1994) High-density continuous cultures of hybridoma cells in a depth filter perfusion system. Biotechnol Bioeng 44:895–901

    Article  CAS  Google Scholar 

  51. Lee JC, Chang HN, Oh DJ (2005) Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system. Biotechnol Progr 21:134–139

    Article  CAS  Google Scholar 

  52. Chang HN, Kim BJ, Jeong CM, Kang JW, Park JK (2008) Multi-stage CSTR bioreactor system equipped with cell recycle unit. PCT WO 2008/091113 A1 (USA, pending; Korean patent 10-0834110)

  53. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  Google Scholar 

  54. Holtzapple MT, Granda CB (2008) Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl Biochem Biotechnol 156:95–106

    Article  Google Scholar 

  55. Chang HN, Kim NJ, Kang JW, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioproc Eng 15:1–10

    Article  CAS  Google Scholar 

  56. Fu Z, Holtzapple MT (2010) Anaerobic mixed-culture fermentation of aqueous ammonia-treated sugarcane bagasse in consolidated bioprocessing. Biotechnol Bioeng 106:216–227

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Nam Chang.

Additional information

N.-J. Kim and J. Kang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H.N., Kim, NJ., Kang, J. et al. Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng 34, 419–431 (2011). https://doi.org/10.1007/s00449-010-0485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0485-8

Keywords

Navigation