Skip to main content

Advertisement

Log in

Cross-linking of horseradish peroxidase adsorbed on polycationic films: utilization for direct dye degradation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP) was immobilized on the polyaniline (PANI) grafted polyacrylonitrile (PAN) films. The maximum HRP immobilization capacity of the PAN-g-PANI-3 film was 221 μg/cm2. The HRP-immobilized PAN-g-PANI-3 film retained 79 % of the activity of the same quantity free enzyme. The HRP-immobilized PAN-g-PANI-3 film was operated for the decolorization of two different benzidine-based dyes in the presence of hydrogen peroxide. The maximum decolorization grade was obtained at pH 6.0 for both dyes. The HRP-immobilized PAN-g-PANI-3 film was very effective for removal of Direct Blue-53 compared to Direct Black-38 from aqueous solutions. The immobilized HRP exhibited high resistance to proteolysis by trypsin compared to the free counterpart. Immobilized HRP preserved 83 % of its original activity even after 8 weeks of storage at 4 °C, while the free enzyme lost its initial activity after 3 weeks of storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gomez JL, Bodalo A, Gomez E, Bastida J, Hidalgo AM, Gomez M (2006) Immobilization of peroxidases on glass beads: an improved alternative for phenol removal. Enzyme Microb Technol 39:1016–1022

    Article  CAS  Google Scholar 

  2. Bhunia A, Durant S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 72:562–567

    Article  CAS  Google Scholar 

  3. Matto M, Husain Q (2009) Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin A layered calcium alginate–starch beads. J Hazard Mater 164:1540–1546

    Article  CAS  Google Scholar 

  4. Osma JF, Toca-Herrera JL, Rodriguez-Couto S (2010) Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. Bioresour Technol 101:8509–8514

    Article  CAS  Google Scholar 

  5. Colborn T (2006) A case for revisiting the safety of pesticides: a closer look at neurodevelopment. Environ Health Perspect 114:10–17

    Article  CAS  Google Scholar 

  6. Lowry LK, Tolos WP, Boeniger MF, Nony CR, Bowman MC (1980) Chemical monitoring of urine from workers potentially exposed to benzidine derived azo dyes. Toxicol Lett 71:29–36

    Article  Google Scholar 

  7. Rinde E, Troll W (1975) Metabolic reduction of benzidine azo dyes to benzidine in the rhesus monkey. J Natl Cancer Inst 55:181–182

    CAS  Google Scholar 

  8. You XY, Chen JG, Hu YN (1990) Studies on the relation between bladder cancer and benzidine or its derived dyes in Shanghai. Br J Ind Med 47:544–552

    CAS  Google Scholar 

  9. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environ Health Perspect 104:714–740

    Google Scholar 

  10. Cristovao R, Tavares APM, Brigida AI, Loureiro JM, Boaventura RAR, Macedo EA, Coelho MAZ (2011) Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J Mol Catal B 72:6–12

    Article  CAS  Google Scholar 

  11. Bafana A, Krishnamurthi K, Devi SS, Chakrabarti T (2008) Biological decolourization of C.I. Direct Black 38 by E. gallinarum. J Hazard Mater 157:187–193

    Article  CAS  Google Scholar 

  12. Karim Z, Husain Q (2010) Application of fly ash adsorbed peroxidase for the removal of bisphenol A in batch process and continuous reactor: Assessment of genotoxicity of its product. Food Chem Toxicol 48:385–3390

    Google Scholar 

  13. Qiu W, Zhang K, Liu J, Koros WJ, Sun Q, Deng Y (2010) Macroporous polymeric sorbents with high selectivity for separation of phenols. Polymer 51:3793–3800

    Article  CAS  Google Scholar 

  14. Arica MY, Altıntas B, Bayramoglu G (2011) Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads: application for textile dye degradation. Bioresour Technol 100:665–669

    Article  Google Scholar 

  15. Bayramoglu G, Arica MY (2008) Enzymatic removal of phenol and p-chloropheol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156:148–155

    Article  CAS  Google Scholar 

  16. Arica MY (2000) Immobilization of polyphenol oxidase on carboxymethylcellulose hydrogels beads: preparation and characterization. Polym Int 49:775–781

    Article  CAS  Google Scholar 

  17. Arica MY, Bayramoglu G (2004) Reversible immobilization of tyrosinase onto polyethyleneimine grafted and Cu(II) chelated poly(HEMA-co-GMA) reactive film. J Mol Catal B 27:255–265

    Article  Google Scholar 

  18. Zhang J, Ye P, Chen S, Wang W (2007) Removal of pentachlorophenol by immobilized horseradish peroxidase. Int Biodeterior Biodegrad 59:307–314

    Article  CAS  Google Scholar 

  19. Karagoz B, Bayramoglu G, Altintas B, Bicak N, Arica MY (2011) Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: immobilized laccase for benzidine based dyes degradation. Bioresour Technol 102:6783–6790

    Article  CAS  Google Scholar 

  20. Xu J, Tang T, Zhang K, Ai S, Du H (2011) Electroenzymatic catalyzed oxidation of bisphenol-A using HRP immobilized on magnetic silk fibroin nanoparticles. Process Biochem 46:1160–1165

    Article  CAS  Google Scholar 

  21. Tang T, Fan H, Ai S, Han R, Qiu Y (2011) Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere 83:255–264

    Article  Google Scholar 

  22. Bayramoglu G, Yilmaz M, Arica MY (2010) Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes. Bioprocess Biosyst Eng 33:439–448

    Article  CAS  Google Scholar 

  23. Akhtar S, Khan AA, Husain Q (2005) Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60:291–301

    Article  CAS  Google Scholar 

  24. Bayramoglu G, Yilmaz M, Arica MY (2010) Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes. Bioresour Technol 101:6615–6621

    Article  CAS  Google Scholar 

  25. Osma JF, Toca-Herrera JL, Rodriguez-Couto S (2010) Biodegradation of a simulated textile effluent by immobilized-coated laccase in laboratory-scale reactors. Appl Catal A 373:147–153

    Article  CAS  Google Scholar 

  26. Georgieva S, Godjevargova T, Mita DG, Diano N, Menale C, Nicolucci C, Romano C, Mita CL, Golovinsky E (2010) Non-isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. J Mol Catal B 66:210–218

    Article  CAS  Google Scholar 

  27. Wang F, Guo C, Yang L-R, Liu C-Z (2010) Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour Technol 101:8931–8935

    Article  CAS  Google Scholar 

  28. Absalan G, Asadi M, Kamran S, Sheikhian L, Goltz DM (2011) Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. J Hazard Mater 192:476–484

    Article  CAS  Google Scholar 

  29. Quintanilla-Guerrero F, Duarte-Vazquez MA, Garcia-Almendarez BE, Tinoco R, Vazquez-Duhalt R, Regalado C (2008) Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresour Technol 99:8605–8611

    Article  CAS  Google Scholar 

  30. Ozoner SK, Yilmaz F, Celik A, Keskinler B, Erhan E (2011) A novel poly(glycine methacrylate-co-3-thienylmethyl methacrylate)-polypyrrole-carbon nanotube-horseradish peroxidase composite film electrode for the detection of phenolic compounds. Curr Appl Phys 11:402–408

    Article  Google Scholar 

  31. Ashraf H, Husain Q (2010) Use of DEAE cellulose adsorbed and cross-linked white radish (Raphanus sativus) peroxidase for the removal of α-naphthol in batch and continuous process. Int Biodeterior Biodegrad 64:27–31

    Article  CAS  Google Scholar 

  32. Shao J, Huang L-L, Yang YM (2009) Immobilization of polyphenol oxidase on alginate–SiO2 hybrid gel: stability and preliminary applications in the removal of aqueous phenol. J Chem Technol Biotechnol 84:633–635

    Article  CAS  Google Scholar 

  33. Gomez JL, Bodalo A, Gomez E, Hidalgo AM, Gomez M, Murcia MD (2007) Experimental behaviour and design model of a fluidized bed reactor with immobilized peroxidase for phenol removal. Chem Eng J 127:47–57

    Article  CAS  Google Scholar 

  34. Carrasco JLG, Gomez EG, Maximo MF, Gomez MG, Murcia MD, Requena SO (2011) A diffusion-reaction kinetic model for the removal of aqueous 4-chlorophenol with immobilized peroxidase. Chem Eng J 166:693–703

    Article  Google Scholar 

  35. Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473

    Article  CAS  Google Scholar 

  36. Bayramoglu G, Arica MY (2009) Immobilization of laccase onto poly(glycidyl methacrylate) brush grafted poly(hydroxyethylmethacrylate) films: enzymatic oxidation of phenolic compounds. Mater Sci Eng C 29:1990–1997

    Article  CAS  Google Scholar 

  37. Bayramoglu G, Altıntas B, Arica MY (2011) Reversible immobilization of uricase on conductive polyaniline brushes grafted on polyacrylonitrile film. Bioprocess Biosyst Eng 34:127–134

    Article  CAS  Google Scholar 

  38. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716

    Article  CAS  Google Scholar 

  39. Bayramoglu G, Karakısla M, Altıntas B, Metin AU, Sacak M, Arica MY (2009) Polyaniline grafted polyacylonitrile conductive composite fibers for reversible immobilization of enzymes: stability and catalytic properties of invertase. Process Biochem 44:880–885

    Article  CAS  Google Scholar 

  40. Bayramoglu G, Metin AU, Arica MY (2010) Surface modification of polyacrylonitrile film by anchoring conductive polyaniline and determination of uricase adsorption capacity and activity. Appl Surf Sci 256:6710–6716

    Article  CAS  Google Scholar 

  41. Ashly PC, Joseph MJ, Mohanan PV (2011) Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem 127:1808–1813

    Article  CAS  Google Scholar 

  42. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  43. Bayramoglu G, Senel AU, Yilmaz M, Arica MY (2008) Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption. Biochem Eng J 40:262–274

    Article  CAS  Google Scholar 

  44. Yang LJ, Guiseppi-Wilson A, Guiseppi-Elie A (2011) Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels. Biomed Microdevices 13:279–289

    Article  CAS  Google Scholar 

  45. Bayramoglu G, Altıntas B, Yilmaz M, Arica MY (2011) Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bioconjugation: catalytic properties and stabilities. Bioresour Technol 102:475–482

    Article  CAS  Google Scholar 

  46. Kulshrestha Y, Husain Q (2006) Direct immobilization of peroxidase on DEAE cellulose from ammonium sulphate fractionated proteins of bitter gourd (Momordica charantia). Enzyme Microb Technol 38:470–477

    Article  CAS  Google Scholar 

  47. Mohamed SA, Aly AS, Mohamed TM, Salah HA (2008) Immobilization of horseradish peroxidase on nonwoven polyester fabric coated with chitosan. Appl Biochem Biotechnol 144:169–179

    Article  CAS  Google Scholar 

  48. Li Z, Liu W, Chen XF, Shang WL (2009) Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water. Water Sci Technol 59:1751–1758

    Article  CAS  Google Scholar 

  49. Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58:1097–1105

    Article  CAS  Google Scholar 

  50. Gomez JL, Bodalo A, Gomez E, Bastida J, Hidalgo AM, Gomez M (2006) Immobilization of peroxidases on glass beads: an improved alternative for phenol removal. Enzyme Microb Technol 39:1016–1022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulay Bayramoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayramoglu, G., Altintas, B. & Yakup Arica, M. Cross-linking of horseradish peroxidase adsorbed on polycationic films: utilization for direct dye degradation. Bioprocess Biosyst Eng 35, 1355–1365 (2012). https://doi.org/10.1007/s00449-012-0724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0724-2

Keywords

Navigation