Skip to main content
Log in

High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

a :

Gas–liquid interfacial area per unit liquid volume (m−1)

CER:

Carbon dioxide evolution rate (mol CO2 h−1)

DO:

Dissolved oxygen level (% of air saturation)

F t :

Mass flow rate of the feed at time t (g h−1)

GC:

Gas chromatography

HPLC:

High performance liquid chromatography

k L :

Mass transfer coefficient (m h−1)

k L a :

Overall volumetric gas–liquid mass transfer coefficient (h−1)

MS:

Mass spectrometry

m :

Maintenance coefficient (h−1)

OUR:

Oxygen uptake rate (g L−1 s−1)

PHB:

Poly(hydroxybutyric acid)

Q t :

Volumetric feed rate at time t (L h−1)

q s :

Specific substrate consumption rate (g g−1 h−1)

ROL:

Rhizopus oryzae lipase

RQ:

Respiratory quotient

S f :

Substrate concentration in the feed (g L−1)

S 0 :

Initial substrate concentration in culture broth (g L−1)

SPKO:

Saponified palm kernel oil

S t :

Concentration of the growth limiting substrate in the feed at time t (g L−1)

V 0 :

Initial volume in the fermenter (L)

V t :

Volume of the broth in the fermenter at time t (L)

Y X/S :

Biomass yield coefficient on substrate (g g−1)

X 0 :

Initial concentration of the biomass (g L−1)

X t :

Biomass concentration at time t (g L−1)

μ :

Specific growth rate (h−1)

References

  1. Arroyo M, Sánchez-Montero JM, Sinisterra JV (1999) Thermal stabilization of immobilized lipase B from Candida antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24:3–12

    CAS  Google Scholar 

  2. Ducret A, Trani M, Lortie R (1998) Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme Microb Technol 22:212–216

    CAS  Google Scholar 

  3. Gumel A, Annuar M, Heidelberg T, Chisti Y (2011) Lipase mediated synthesis of sugar fatty acid esters. Process Biochem 46:2079–2090

    CAS  Google Scholar 

  4. Kiran KR, Divakar S (2001) Lipase catalyzed synthesis of organic acid esters of lactic acid in non-aqueous media. J Biotechnol 87:109–121

    CAS  Google Scholar 

  5. Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res 23:114–120

    CAS  Google Scholar 

  6. Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? Trends Biotechnol 15:97–101

    CAS  Google Scholar 

  7. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    CAS  Google Scholar 

  8. Chen H-P, Hsiao K-F, Wu S-H, Wang K-T (1995) Regioselectivity enhancement by partial purification of lipase from Aspergillus niger. Biotechnol Lett 17:305–308

    CAS  Google Scholar 

  9. Ghanem A (2007) Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 63:1721–1754

    CAS  Google Scholar 

  10. Kodera Y, Sakurai K, Satoh Y, Uemura T, Kaneda Y, Nishimura H, Hiroto M, Matsushima A, Inada Y (1998) Regioselective deacetylation of peracetylated monosaccharide derivatives by polyethylene glycol-modified lipase for the oligosaccharide synthesis. Biotechnol Lett 20:177–180

    CAS  Google Scholar 

  11. Therisod M, Klibanov AM (1987) Regioselective acylation of secondary hydroxyl groups in sugars catalyzed by lipases in organic solvents. J Am Chem Soc 109:3977–3981

    CAS  Google Scholar 

  12. Tsai SW, Dordick JS (1996) Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol Bioeng 52:296–300

    CAS  Google Scholar 

  13. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251

    CAS  Google Scholar 

  14. Schmidt-Dannert C (1999) Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem 7:2123–2130

    CAS  Google Scholar 

  15. Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    CAS  Google Scholar 

  16. Vulfson EN (ed) (1994) Industrial applications of lipases. Cambridge University Press, Cambridge

    Google Scholar 

  17. Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR (2006) Understanding Candida rugosa lipases: an overview. Biotechnol Adv 24:180–196

    Google Scholar 

  18. Reis P, Holmberg K, Watzke H, Leser M, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147:237–250

    Google Scholar 

  19. Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    CAS  Google Scholar 

  20. Chuensangjun C, Pechyen C, Chisti Y, Sirisansaneeyakul S (2012) Lipase-catalysed polymerization of lactic acid and the properties of the polymer. Adv Mater Res 506:154–157

    CAS  Google Scholar 

  21. Gumel A, Annuar M, Chisti Y, Heidelberg T (2012) Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. Ultrason Sonochem 19:659–667

    CAS  Google Scholar 

  22. Gumel A, Annuar M, Heidelberg T, Chisti Y (2011) Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate. Bioresour Technol 102:8727–8732

    CAS  Google Scholar 

  23. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  Google Scholar 

  24. Singh M, Singh S, Singh RS, Chisti Y, Banerjee UC (2008) Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase. Bioresour Technol 99:2116–2120

    CAS  Google Scholar 

  25. Barros M, Fleuri L, Macedo G (2010) Seed lipases: sources, applications and properties-a review. Braz J Chem Eng 27:15–29

    CAS  Google Scholar 

  26. Brownlee IA, Forster DJ, Wilcox MD, Dettmar PW, Seal CJ, Pearson JP (2010) Physiological parameters governing the action of pancreatic lipase. Nutr Res Rev 1:1–9

    Google Scholar 

  27. Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39:547–567

    CAS  Google Scholar 

  28. Kurtovic I, Marshall SN, Zhao X, Simpson BK (2009) Lipases from mammals and fishes. Rev Fish Sci 17:18–40

    CAS  Google Scholar 

  29. Mendes AA, Oliveira PC, de Castro HF (2012) Properties and biotechnological applications of porcine pancreatic lipase. J Molec Catal B Enzym 78:119–134

    Google Scholar 

  30. Akoh CC, Lee GC, Shaw JF (2004) Protein engineering and applications of Candida rugosa lipase isoforms. Lipids 39:513–526

    CAS  Google Scholar 

  31. Ferrer P, Montesinos JL, Valero F, Solà C (2001) Production of native and recombinant lipases by Candida rugosa. Appl Biochem Biotechnol 95:221–255

    CAS  Google Scholar 

  32. Gaskin DJH, Romojaro A, Turner NA, Jenkins J, Vulfson EN (2001) Alteration of lipase chain length specificity in the hydrolysis of esters by random mutagenesis. Biotechnol Bioeng 73:433–441

    CAS  Google Scholar 

  33. Gerritse G, Hommes RWJ, Quax WJ (1998) Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 64:2644–2651

    CAS  Google Scholar 

  34. Schmidt M, Baumann M, Henke E, Konarzycka-Bessler M, Bornscheuer UT (2004) Directed evolution of lipases and esterases. Methods Enzymol 388:199–207

    CAS  Google Scholar 

  35. Haki G, Rakshit S (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    CAS  Google Scholar 

  36. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    CAS  Google Scholar 

  37. Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharmacol 45:144–158

    CAS  Google Scholar 

  38. Contesini FJ, Lopes DB, Macedo GA, Nascimento MG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171

    CAS  Google Scholar 

  39. Fickers P, Destain J, Thonart P (2009) Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. J Basic Microbiol 49:212–215

    CAS  Google Scholar 

  40. Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68:1–21

    CAS  Google Scholar 

  41. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    CAS  Google Scholar 

  42. Horchani H, Aissa I, Ouertani S, Zarai Z, Gargouri Y, Sayari A (2011) Staphylococcal lipases: biotechnological applications. J Molec Catal B Enzym 76:125–132

    Google Scholar 

  43. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    CAS  Google Scholar 

  44. Li N, Zong MH (2010) Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catal B Enzym 66:43–54

    Google Scholar 

  45. Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B Enzym 66:15–32

    CAS  Google Scholar 

  46. Rubin B, Dennis EA (1997) Preface. In: Rubin B, Dennis EA (eds) Methods in enzymology. Academic Press, New York

  47. Salameh M, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283

    CAS  Google Scholar 

  48. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:1–35

    Google Scholar 

  49. Bornscheuer UT (2006) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Google Scholar 

  50. Fan Y, Qian J (2010) Lipase catalysis in ionic liquids/supercritical carbon dioxide and its applications. J Mol Catal B Enzym 66:1–7

    CAS  Google Scholar 

  51. Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. Biotechnol Set 37–191

  52. Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30:237–266

    CAS  Google Scholar 

  53. Kobayashi T (2011) Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnol Lett 33:1911–1919

    CAS  Google Scholar 

  54. Per B, Karl H (2000) Biocatalytic synthesis of enantiopure compounds using lipases. In: Stereoselective biocatalysis. CRC Press, Boca Raton

  55. Yang Y, Yu Y, Zhang Y, Liu C, Shi W, Li Q (2011) Lipase/esterase-catalyzed ring-opening polymerization: a green polyester synthesis technique. Process Biochem 46:1900–1908

    CAS  Google Scholar 

  56. Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62:9–14

    CAS  Google Scholar 

  57. Bisen PS, Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS (2010) Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett 32:1019–1030

    CAS  Google Scholar 

  58. Delorme V, Dhouib R, Canaan S, Fotiadu F, Carrière F, Cavalier J-F (2011) Effects of surfactants on lipase structure, activity, and inhibition. Pharm Res 28:1831–1842

    CAS  Google Scholar 

  59. Gordillo MA, Obradors N, Montesinos JL, Valero F, Lafuente J, Sola C (1995) Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa. Appl Microbiol Biotechnol 43:38–41

    CAS  Google Scholar 

  60. Shu Z-Y, Jiang H, Lin R-F, Jiang Y-M, Lin L, Huang J-Z (2010) Technical methods to improve yield, activity and stability in the development of microbial lipases. J Mol Catal B Enzym 62:1–8

    CAS  Google Scholar 

  61. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    CAS  Google Scholar 

  62. Balcão VM, Paiva AL, Xavier Malcata F (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392–416

    Google Scholar 

  63. Malcata FX, Reyes HR, Garcia HS, Hill CG, Amundson CH (1992) Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microb Technol 14:426–446

    CAS  Google Scholar 

  64. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    CAS  Google Scholar 

  65. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    CAS  Google Scholar 

  66. Chisti Y (1998) 1 I Strategies in Downstream processing

  67. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357

    CAS  Google Scholar 

  68. Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11:1–13

    CAS  Google Scholar 

  69. Yamanè T, Shimizu S (1984) Fed-batch techniques in microbial processes. In: Bioprocess parameter control. Springer, Berlin

  70. O’Connor GM, Sanchez-Riera F, Cooney CL (2004) Design and evalution of control strategies for high cell density fermentations. Biotechnol Bioeng 39:293–304

    Google Scholar 

  71. Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    CAS  Google Scholar 

  72. Shojaosadati SA, Marjan S, Kolaei V, Farnoud AM (2008) Recent advances in high cell density cultivation for production of recombinant protein. Iran J Biotechnol 6:63–84

    CAS  Google Scholar 

  73. Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118

    Google Scholar 

  74. Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61:876–885

    CAS  Google Scholar 

  75. Maghsoudi A, Hosseini S, Shojaosadati S, Vasheghani-Farahani E, Nosrati M, Bahrami A (2012) A new methanol-feeding strategy for the improved production of β-galactosidase in high cell-density fed-batch cultures of Pichia pastoris Mut + strains. Biotechnol Bioproess Eng 17:76–83

    CAS  Google Scholar 

  76. Riesenberg D, Menzel K, Schulz V, Schumann K, Veith G, Zuber G, Knorre WA (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Microbiol Biotechnol 34:77–82

    CAS  Google Scholar 

  77. Yari K, Fatemi SS-A, Tavallaei M (2012) High level expression of recombinant BoNT/A-Hc by high cell density cultivation of Escherichia coli. Bioprocess Biosyst Eng 35:407–414

    CAS  Google Scholar 

  78. Yee L, Blanch H (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Nat Biotechnol 10:1550–1556

    CAS  Google Scholar 

  79. Lee SY, Chang HN (1995) Production of poly (hydroxyalkanoic acid). Adv Biochem Eng Biotechnol 52:27

    CAS  Google Scholar 

  80. Suzuki T, Yamane T, Shimizu S (1987) Mass production of thiostrepton by fed-batch culture of Streptomyces laurentii with pH-stat modal feeding of multi-substrate. Appl Microbiol Biotechnol 25:526–531

    CAS  Google Scholar 

  81. Suzuki T, Yamane T, Shimizu S (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374

    CAS  Google Scholar 

  82. Akbari N, Khajeh K, Ghaemi N, Salemi Z (2010) Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expr Purif 70:254–259

    CAS  Google Scholar 

  83. Akbari N, Khajeh K, Rezaie S, Mirdamadi S, Shavandi M, Ghaemi N (2010) High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr Purif 70:75–80

    CAS  Google Scholar 

  84. Narayanan N, Chou CP (2009) Alleviation of proteolytic sensitivity to enhance recombinant lipase production in Escherichia coli. Appl Environ Microbiol 75:5424–5427

    CAS  Google Scholar 

  85. Tang S-J, Sun K-H, Sun G-H, Chang T-Y, Lee G-C (2000) Recombinant Expression of the Candida rugosa lip4 Lipase in Escherichia coli. Protein Expr Purif 20:308–313

    CAS  Google Scholar 

  86. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765

    CAS  Google Scholar 

  87. Carstensen F, Apel A, Wessling M (2012) In situ product recovery: submerged membranes vs. external loop membranes. J Membr Sci 394–395, 1–36

  88. Chisti Y (2007) Principles of membrane separation processes. In: Subramanian G (ed) Bioseparation and bioprocessing: a handbook, 2nd ed. Wiley-VCH, New York

  89. Chang HN, Yoo I-K, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12:467–487

    CAS  Google Scholar 

  90. Pörtner R, Märkl H (1998) Dialysis cultures. Appl Microbiol Biotechnol 50:403–414

    Google Scholar 

  91. Adamitsch BF, Karner F, Hampel WA (2003) High cell density cultivation of Brevibacterium linens and formation of proteinases and lipase. Biotechnol Lett 25:705–708

    CAS  Google Scholar 

  92. Kim B, Hou C (2006) Production of lipase by high cell density fed-batch culture of Candida cylindracea. Bioprocess Biosyst Eng 29:59–64

    CAS  Google Scholar 

  93. Lee SY, Rhee JS (1993) Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzym Microb Technol 15:617–623

    CAS  Google Scholar 

  94. Montesinos JL, Campmajo C, Iza J, Valero F, Lafuente J, Sola C (1994) Use of an intelligent system to monitor and control fermentation processes: application to lipase production by Candida rugosa. Process Control Qual 5:237–244

    CAS  Google Scholar 

  95. Chattaway T, Demain AL, Stephanopoulus G (1992) Use of various measurements for biomass estimation. Biotechnol Prog 8:81–84

    CAS  Google Scholar 

  96. Heinzle E, Reuss M (1987) Mass spectrometry in biotechnological process analysis and control. Plenum, New York

    Google Scholar 

  97. Von Schlien R, Fagervick K, Saxen B, Ringbom K, Rydstrom M (1995) Adaptive on-line model for aerobic Saccharomyces cerevisiae fermentation. Biotechnol Bioeng 48:631–638

    Google Scholar 

  98. Valero F, Poch M, Sola C, Santos-Lapa RA, Lima JL (1991) On line monitoring of lipase production in fermentation processes. Biotechnol Tech 5:251–254

    CAS  Google Scholar 

  99. Gilham D, Lehner R (2005) Techniques to measure lipase and esterase activity in vitro. Methods 36:139–147

    CAS  Google Scholar 

  100. Ben Rejeb I, Arduini F, Amine A, Gargouri M, Palleschi G (2007) Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Anal Chim Acta 594:1–8

    CAS  Google Scholar 

  101. Gordillo MAMJL, Casas C, Valero F, Lafuente J, Sola C (1998) Improving lipase production from Candida rugosa by a biochemical engineering approach. Chem Phys Lipids 93:131–142

    CAS  Google Scholar 

  102. Gordillo MAS, Sanchez A, Valero F, Motesinos JL, Lafuente J, Sola C (1998) Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 60:156–168

    CAS  Google Scholar 

  103. Montesinos JLGMA, Valero F, Lafuente J, Sola C, Valdman B (1996) Improvement of lipase productivity in bioprocesses using a structured mathematical model. J Biotechnol 52:207–218

    Google Scholar 

  104. Boareto AJM, Souza MBD Jr, Valero F, Valdman B (2007) A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa. J Chem Technol Biotechnol 82:319–327

    CAS  Google Scholar 

  105. Chartrain M, Marcin C, Katz L, Salmon P, Brix T, Buckland B, Greasham R (1993) Enhancement of lipase production during fed-batch cultivation of Pseudomonas aeruginosa MB 5001. J Ferment Bioeng 76:487–492

    CAS  Google Scholar 

  106. Tamerler C, Keshavarz T (2000) Lipolytic enzyme production in batch and fed-batch cultures of Ophiostoma piceae and Fusarium oxysporum. J Chem Technol Biotechnol 75:785–790

    CAS  Google Scholar 

  107. Suzuki T, Mushiga Y, Yamane T, Shimizu S (1988) Mass production of lipse by fed-batch culture of Pseudomonas fluorescens. Appl Microbiol Biotechnol 27:417–422

    CAS  Google Scholar 

  108. Kim BS, Hou CT (2006) Production of lipase by high cell density fed-batch culture of Candida cylindracea. Bioprocess Biosyst Eng 29:59–64

    CAS  Google Scholar 

  109. Li C-Y, Cheng C-Y, Chen T-L (2004) Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as the carbon source. Biochem Eng J 19:25–31

    Google Scholar 

  110. Resina D, Cos O, Ferrer P, Valero F (2005) Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 Promoter. Biotechnol Bioeng 91:760–767

    CAS  Google Scholar 

  111. Arnau C, Ramon R, Casas C, Valero F (2010) Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzyme Microb Technol 46:494–500

    CAS  Google Scholar 

  112. Cos O, Resina D, Ferrer P, Montesinos JL, Valero F (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26:86–94

    CAS  Google Scholar 

  113. Zhao W, Wang J, Deng R, Wang X (2008) Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol 35:189–195

    CAS  Google Scholar 

  114. Ikeda S, Nikaido K, Araki K, Yoshitake A, Kumagai H, Isoai A (2004) Production of recombinant human lysosomal acid lipase in Schizosaccharomyces pombe: development of a fed-batch fermentation and purification process. J Biosci Bioeng 98:366–373

    CAS  Google Scholar 

  115. Ito T, Kikuta H, Nagamori E, Honda H, Ogino H, Ishikawa H, Kobayashi T (2001) Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 91:245–250

    CAS  Google Scholar 

  116. Minning S, Serrano A, Ferrer P, Solá C, Schmid RD, Valero F (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70

    CAS  Google Scholar 

  117. Biener R, Steinkamper A, Horn T (2012) Calorimetric control of the specific growth rate during fed-batch cultures of Saccharomyces cerevisiae. J Biotechnol 160:195–201

    CAS  Google Scholar 

  118. Oh G, Moo-Young M (1998) Automated fed-batch culture of recombinant Saccharomyces cerevisiae based on on-line monitored maximum substrate uptake rate. Biochem Eng J 1:211–217

    CAS  Google Scholar 

  119. Li C-Y, Chen S-J, Cheng C-Y, Chen T-L (2005) Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochem Eng J 25:195–199

    Google Scholar 

  120. Stratton JCV, Meagher M (1998) High cell-density fermentation. Methods Mol Biol 103:107–120

    CAS  Google Scholar 

  121. Ishihara K, Suzuki T, Yamane T, Shimizu S (1989) Effective production of Pseudomonas fluorescens lipase by semi-batch culture with turbidity-dependent automatic feeding of both olive oil and iron ion. Appl Microbiol Biotechnol 31:45–48

    CAS  Google Scholar 

  122. Suhaila MS (2010) Effect of palm oil on oxygen transfer in a stirred tank bioreactor. J Appl Sci 10:2745–2747

    Google Scholar 

  123. Amaral PFF, Rocha-Leão MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2006) Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol 81:1368–1374

    CAS  Google Scholar 

  124. Amaral P, de Almeida A, Peixoto T, Rocha-Leão M, Coutinho J, Coelho M (2007) Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World J Microbiol Biotechnol 23:339–344

    CAS  Google Scholar 

  125. Elibol M, Ozer D (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem 36:325–329

    Google Scholar 

  126. Ju LK, Lee JF, Armiger WB (1991) Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol Prog 7:323–329

    CAS  Google Scholar 

  127. Cho MH, Wang SS (1988) Enhancement of oxygen transfer in hybridoma cell culture by using a perfluorocarbon as an oxygen carrier. Biotechnol Lett 10:855–860

    CAS  Google Scholar 

  128. Alonso FOM, Oliveira EBL, Dellamora-Ortiz GM, Pereira-Meirelles FV (2005) Improvement of lipase production at different stirring speeds and oxygen levels. Braz J Chem Eng 22:9–18

    CAS  Google Scholar 

  129. Gulati R, Saxena R, Gupta R (2000) Fermentation and downstream processing of lipase from Aspergillus terreus. Process Biochem 36:149–155

    CAS  Google Scholar 

  130. Annuar M, Tan I, Ibrahim S, Ramachandran K (2007) Production of medium-chain-length poly (3-hydroxyalkanoates) from crude fatty acids mixture by Pseudomonas putida. Food Bioprod Process 85:104–119

    CAS  Google Scholar 

  131. Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. University of Tokyo Press, Japan

    Google Scholar 

  132. Moraveji MK, Pasand MM, Davarnejad R, Chisti Y (2012) Effects of surfactants on hydrodynamics and mass transfer in a split-cylinder airlift reactor. Can J Chem Eng 90:93–99

    CAS  Google Scholar 

  133. Chisti M, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Commun 60:195–242

    CAS  Google Scholar 

  134. Sokolovska I, Albasi C, Riba J-P, Báleš V (1998) Production of extracellular lipase by Candida cylindracea CBS 6330. Bioprocess Biosyst Eng 19:179–186

    CAS  Google Scholar 

  135. Osborn H, Akoh C (2006) Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 1:110–120

    Google Scholar 

  136. Kheadr EE, Vuillemard J, El-Deeb S (2003) Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Res Int 36:241–252

    CAS  Google Scholar 

  137. Pszczola DE (2001) Antioxidants: from preserving food quality to quality of life. Food Technol 55:51–59

    Google Scholar 

  138. Kanjilal S, Prasad RB, Kaimal TN, Rao S (1999) Synthesis and estimation of calorific value of a structured lipid-potential reduced calorie fat. Lipids 34:1045–1055

    CAS  Google Scholar 

  139. Akoh CC, Yee LN (1997) Enzymatic synthesis of position-specific low-calorie structured lipids. J Am Oil Chem Soc 74:1409–1413

    CAS  Google Scholar 

  140. Gill I, Valivety R (1997) Polyunsaturated fatty acids, Part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401

    CAS  Google Scholar 

  141. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    CAS  Google Scholar 

  142. Kazlauskas RJ, Bornscheuer UT (2008) Biotransformations with lipases. Biotechnology. Wiley-VCH Verlag GmbH

  143. Byron Rubin EAD (1997) Lipases, Part B: enzyme characterization and utilization. Methods Enzymol 286:1–563

    Google Scholar 

  144. Rantakylä M, Alkio M, Aaltonen O (1996) Stereospecific hydrolysis of 3-(4-methoxyphenyl)glycidic ester in supercritical carbon dioxide by immobilized lipase. Biotechnol Lett 18:1089–1094

    Google Scholar 

  145. Turner C, Persson M, Mathiasson L, Adlercreutz P, King JW (2001) Lipase-catalyzed reactions in organic and supercritical solvents: application to fat-soluble vitamin determination in milk powder and infant formula. Enzyme Microb Technol 29:111–121

    CAS  Google Scholar 

  146. King J, Snyder J, Frykman H, Neese A (2001) Sterol ester production using lipase-catalyzed reactions in supercritical carbon dioxide. Eur Food Res Technol 212:566–569

    CAS  Google Scholar 

  147. Vaysse L, Dubreucq E, Pirat J-L, Galzy P (1997) Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyltransferase from Candida parapsilosis. J Biotechnol 53:41–46

    CAS  Google Scholar 

  148. Chatterjee T, Chatterjee BK, Bhattacharyya DK (2001) Study of lipase-catalyzed hydrolysis of some monoterpene esters. Can J Microbiol 47:397–403

    CAS  Google Scholar 

  149. Bornscheuer UT (2005) Enzymes in lipid modification. Wiley-VCH, Weinheim, p 200

    Google Scholar 

  150. Yeo SH, Nihira T, Yamada Y (1998) Screening and identification of a novel lipase from Burkholderia sp. YY62 which hydrolyzes t-butyl esters effectively. J Gen Appl Microbiol 44:147–152

    CAS  Google Scholar 

  151. Dong H, Gao S, Han S-p, Cao S-g (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol Appl Biochem 30:251–256

    CAS  Google Scholar 

  152. Arroyo MSJ (1995) Influence of chiral corvones on selectivity of pure lipase-B from Candida antarctica. Biotechnol Lett 17:30

    Google Scholar 

  153. Hutt AJCJ (1984) The importance of stereochemistry in the clinical pharmacokinetics of the 2 arylpropionic acid nonsteroidal anti-inflammatory drugs. Clin Pharmacokinet 9:3

    Google Scholar 

  154. Van Dyck SMO, Lemière GLF, Jonckers THM, Dommisse R, Pieters L, Buss V (2001) Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalysed acetylation. Tetrahedron Asymmetry 12:785–789

    Google Scholar 

  155. J-y Xin, Li S-b, Xu Y, Chui J-r, Xia C-g (2001) Dynamic enzymatic resolution of Naproxen methyl ester in a membrane bioreactor. J Chem Technol Biotechnol 76:579–585

    Google Scholar 

  156. Miyazawa T, Yukawa T, Ueji S, Yanagihara R, Yamada T (1998) Resolution of 2-phenoxy-1-propanols by Pseudomonas sp. lipase-catalyzed highly enantioselective transesterification: influence of reaction conditions on the enantioselectivity toward primary alcohols. Biotechnol Lett 20:235–238

    CAS  Google Scholar 

  157. Weber N, Klein E, Mukherjee KD (1999) Long-chain acyl thioesters prepared by solvent-free thioesterification and transthioesterification catalysed by microbial lipases. Appl Microbiol Biotechnol 51:401–404

    CAS  Google Scholar 

  158. Packter NM (1996) Lipases—their structure, biochemistry and application. In: Woolley P, Petersen, SB (eds) Biochemical education, vol 28, issue 7. Cambridge University Press, Cambridge £45, pp 831–832

  159. From M, Adlercreutz P, Mattiasson B (1997) Lipase catalyzed esterification of lactic acid. Biotechnol Lett 19:315–318

    CAS  Google Scholar 

  160. Lie Ken Jie M, Xun F (1998) Studies of lipase-catalyzed esterification reactions of some acetylenic fatty acids. Lipids 33:71–75

    CAS  Google Scholar 

  161. Janssen AEM, Sjursnes BJ, Vakurov AV, Halling PJ (1999) Kinetics of lipase-catalyzed esterification in organic media: correct model and solvent effects on parameters. Enzyme Microb Technol 24:463–470

    CAS  Google Scholar 

  162. Soni K, Madamwar D (2001) Ester synthesis by lipase immobilized on silica and microemulsion based organogels (MBGs). Process Biochem 36:607–611

    CAS  Google Scholar 

  163. Surribas A, Stahn R, Montesinos JL, Enfors S-O, Valero F, Jahic M (2007) Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol 130:291–299

    CAS  Google Scholar 

  164. Amaral PF, Freire MG, Rocha-Leão MHM, Marrucho IM, Coutinho JA, Coelho MAZ (2007) Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol Bioeng 99:588–598

    Google Scholar 

  165. Chen JY, Wen CM, Chen TL (1999) Effect of oxygen transfer on lipase production by Acinetobacter radioresistens. Biotechnol Bioeng 62:311–316

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged University of Malaya for grant research PV036/2012A, RG165-11AFR, and RP024-2012A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. M. Annuar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehmin, M.N.I., Annuar, M.S.M. & Chisti, Y. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess Biosyst Eng 36, 1527–1543 (2013). https://doi.org/10.1007/s00449-013-0943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0943-1

Keywords

Navigation