Skip to main content

Advertisement

Log in

d-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly l-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-l and d-lactic acid and has a higher melting temperature. To date, several studies have explored the production of l-lactic acid, but information on biosynthesis of d-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of d-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to d-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L−1 of d-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g−1 and 1.01 g L−1 h−1, respectively. Luedeking–Piret model described the mixed growth-associated production of d-lactic acid with a maximum specific growth rate 0.2 h−1 and product formation rate 0.026 h−1, obtained for this strain. The efficient synthesis of d-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

μ max :

Maximum specific growth rate (h−1)

C 0 :

Initial glucose concentration (g L−1)

C p :

Product concentration (g L−1)

Y PS :

Product yield (g lactic acid g−1 glucose)

YPS :

Product overall yield (g lactic acid g−1 biomass)

Y XS :

Yield of cell dry mass from substrate (g cell dry mass g−1 glucose)

Y PX :

Yield of product from cell dry mass (g d-lactic acid g−1 cell dry mass)

q PS :

Product formation rate (h−1) calculated based on the equation q PS =  \(\frac{1}{S} \times \frac{{d{\text{P}}}}{{d{\text{t}}}}\)

Q p :

Productivity (g L−1 h−1)

References

  1. Shen X, Xia L (2006) Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation. Appl Biochem Biotechnol 133:251–262

    Article  CAS  Google Scholar 

  2. Datta R, Tsai S, Bonsignore P, Moon S, Frank J (1995) Technological and economic-potential of poly (lactic acid) and lactic-acid derivatives. FEMS Microbiol Rev 16:221–231

    Article  CAS  Google Scholar 

  3. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  CAS  Google Scholar 

  4. Brizzolara D, Cantow H, Diederichs K, Keller E, Domb A (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    Article  CAS  Google Scholar 

  5. Ikada Y, Jamshidi K, Tsuji H, Hyon S (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  6. Tsuji F (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-Lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796

    Article  CAS  Google Scholar 

  7. Yadav AK, Chaudhari AB, Kothari RM (2011) Bioconversion of renewable resources into lactic acid: an industrial view. Crit Rev Biotechnol 31:1–19

    Article  CAS  Google Scholar 

  8. Vadlani PV, Mathews AP, Karr GS (2008) Low-cost propionate salt as road deicer: evaluation of cheese whey and other media components. World J Microbiol Biotechnol 24:825–832

    Article  CAS  Google Scholar 

  9. Vadlani PV, Matthews AP, Karr GS (2008) A two-stage fermentation process: production of propionate and acetate salt as road deicer from cheese whey. Biol Eng 1:95–104

    Article  CAS  Google Scholar 

  10. Moon SK, Lee J, Song H, Cho JH, Choi GW, Seung D (2012) Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei. Bioprocess Biosyst Eng. doi:10.1007/s00449-012-0810-5

  11. Phrueksawan P, Kulpreecha S, Sooksai S, Thongchul N (2012) Direct fermentation of l (+)-Lactic acid from cassava pulp by solid state culture of Rhizopus oryzae. Bioprocess Biosyst Eng 35:1429–1436

    Article  CAS  Google Scholar 

  12. Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of d-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4:1021–1027

    Article  CAS  Google Scholar 

  13. Yanez R, Moldes AB, Alonso JL, Parajo JC (2003) Production of d-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164

    Article  CAS  Google Scholar 

  14. Tashiro Y, Kaneko W, Sun Y, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol 89:1741–1750

    Article  CAS  Google Scholar 

  15. Shinkawa S, Okano K, Tanaka T, Ogino C, Kondo A (2009) Efficient d-lactic acid production from raw starch. J Biosci Bioeng 108:S47–S48

    Article  Google Scholar 

  16. Schmidt S, Padukone N (1997) Production of lactic acid from wastepaper as a cellulosic feedstock. J Ind Microbiol Biotechnol 18:10–14

    Article  CAS  Google Scholar 

  17. Xu Z, Wang Q, Jiang Z, Yang X, Ji Y (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 31:162–167

    Article  CAS  Google Scholar 

  18. Marques S, Santos JAL, Girio FM, Roseiro JC (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem Eng J 41:210–216

    Article  CAS  Google Scholar 

  19. Kim K, Kim W, Seo D, Yoo I, Kim E, Yoon H (2003) Production of lactic acid from food wastes. Appl Biochem Biotechnol 105:637–647

    Article  Google Scholar 

  20. Yanez R, Alonso JL, Parajo JC (2005) Study on the suitability of untreated corrugated cardboard for d-lactic acid production by SSF using Lactobacillus coryniformis subsp. torquens. Afinidad 62:295–301

    CAS  Google Scholar 

  21. Yanez R, Alonso JL, Parajo JC (2005) d-Lactic acid production from waste cardboard. J Chem Technol Biotechnol 80:76–84

    Article  CAS  Google Scholar 

  22. Wang L, Zhao B, Li F, Xu K, Ma C, Tao F, Li Q, Xu P (2011) Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017

    Article  CAS  Google Scholar 

  23. Biermann CJ (1996) Handbook of pulping and papermaking. Elsevier Science, San Diego

    Google Scholar 

  24. Li Y, Ruan R, Chen PL, Liu Z, Pan X, Lin X, Liu Y, Mok CK, Yang T (2004) Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans ASAE 47:821–825

    Article  CAS  Google Scholar 

  25. Calabia BP, Tokiwa Y (2007) Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332

    Article  CAS  Google Scholar 

  26. Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  27. Mukhopadhyay A (2009) Bioconversion of paper mill lignocellulosic materials to lactic acid using cellulase enzyme complex and microbial cultures. [MS Thesis]. Available from: K-state research exchange. Kansas State University, Manhattan

  28. Lee Y, Fan L (1982) Kinetic-studies of enzymatic-hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnol Bioeng 24:2383–240624

    Article  CAS  Google Scholar 

  29. Chandra RP, Au-Yeung K, Chanis C, Roos AA, Mabee W, Chung PA, Ghatora S, Saddler JN (2011) The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol Prog 27:77–85

    Article  CAS  Google Scholar 

  30. Demirci A, Pometto AL (1992) Enhanced production of d-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649. J Ind Microbiol 11:23–28

    Article  CAS  Google Scholar 

  31. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Improved production of homo-d-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861

    Article  CAS  Google Scholar 

  32. Zhao B, Wang L, Li F, Hua D, Ma C, Ma Y, Xu P (2010) Kinetics of d-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresour Technol 101:6499–6505

    Article  CAS  Google Scholar 

  33. Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol 81(3):217–223

    Article  CAS  Google Scholar 

  34. Patel M, Ou M, Harbrucker R, Aldrich H, Buszko M, Ingram L, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228–3235

    Article  CAS  Google Scholar 

  35. Parajo J, Alonso J, Moldes A (1997) Production of lactic acid from lignocellulose in a single stage of hydrolysis and fermentation. Food Biotechnol 11:45–58

    Article  CAS  Google Scholar 

  36. Nakasaki K, Adachi T (2003) Effects of intermittent addition of cellulase for production of l-lactic acid from waste water sludge by simultaneous saccharification and fermentation. Biotechnol Bioeng 82:263–270

    Article  CAS  Google Scholar 

  37. Akerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour Technol 75:119–126

    Article  CAS  Google Scholar 

  38. Boonmee M, Leksawasdi N, Bridge W, Rogers P (2003) Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochem Eng J 14:127–135

    Article  CAS  Google Scholar 

  39. Nandasana AD, Kumar S (2008) Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochem Eng J 15:277–284

    Article  Google Scholar 

  40. Amrane A (2005) Analysis of the kinetics of growth and lactic acid production for Lactobacillus helveticus growing on supplemented whey permeate. J Chem Technol Biotechnol 80:345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Consortium for Plant Biotechnology Research and supported by the Department of Grain Science and Industry at Kansas State University. The authors are grateful to Novozymes Inc. for the donation of enzymes. This is contribution number 13-180-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen V. Vadlani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Vadlani, P.V. d-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36, 1897–1904 (2013). https://doi.org/10.1007/s00449-013-0965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0965-8

Keywords

Navigation