Skip to main content
Log in

Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Continuous bio-production of succinic acid was reported in homogeneous solid dispersion (HSD) system utilizing porous coconut shell activated carbon (CSAC) as immobilization carrier. The aim of the present work was to implement the HSD system to increase the area of cell immobilization and the rate of succinic-acid production from the lignocellulosic medium. The ratio of the two enzymes (cellulase-to-hemicellulase) was initially optimized to break down the lignocellulose into its free monomers, wherein the best ratio was determined as 4:1. Succinic-acid production was evaluated in the HSD system by varying the substrate loading and dilution rate. The results showed that high productivities of succinic acid were obtained when 60 g/L glucose was fed over a dilution rates ranging from 0.03 to 0.4/h. The titer of succinic acid decreased gradually with higher dilution rate, whereas the residual substrate concentration increased with it. Critical dilution rate was determined to be 0.4/h at which the best productivity of succinic acid of 6.58 g/L h and its yield of 0.66 g/g were achieved using oil palm fronds (OPF) hydrolysate. This work lends evidence to the use of CSAC and lignocellulosic hydrolysate to further exploit the potential economies of scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morales M, Pielhop T, Saliba P, Hungerbühler K, Rudolf von Rohr P, Papadokonstantakis S (2017) Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels Bioprod Biorefin 11(3):441–453

    Article  CAS  Google Scholar 

  2. Cao Y, Zhang R, Sun C, Cheng T, Liu Y, Xian M (2013) Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. BioMed Res Int 2013:12

    Google Scholar 

  3. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM (2017) Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 101(8):3055–3075

    Article  CAS  PubMed  Google Scholar 

  4. Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 31(12):1947–1951

    Article  CAS  PubMed  Google Scholar 

  5. Nghiem NP, Kleff S, Schwegmann S (2017) Succinic acid: technology development and commercialization. Fermentation 3(2):26

    Article  CAS  Google Scholar 

  6. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN (2004) Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 35(6):648–653

    Article  CAS  Google Scholar 

  7. Akhtar J, Idris A (2017) Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renew Energy 114:917–923

    Article  CAS  Google Scholar 

  8. Salvachúa D, Smith H, St. John PC, Mohagheghi A, Peterson DJ, Black BA, Dowe N, Beckham GT (2016) Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. Bioresour Technol 214:558–566

    Article  CAS  PubMed  Google Scholar 

  9. Borges ER, Pereira N (2011) Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 38:1001–1011

    Article  CAS  PubMed  Google Scholar 

  10. Luthfi AAI, Jahim JM, Harun S, Tan JP, Mohammad AW (2016) Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochem 51(10):1527–1537

    Article  CAS  Google Scholar 

  11. Sabiha-Hanim S, Noor MAM, Rosma A (2011) Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour Technol 102(2):1234–1239

    Article  CAS  PubMed  Google Scholar 

  12. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  13. Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 8:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Heerden CD, Nicol W (2013) Continuous succinic acid fermentation by Actinobacillus succinogenes. Biochem Eng J 73:5–11

    Article  CAS  Google Scholar 

  15. Brink H, Nicol W (2014) Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures. Microb Cell Fact 13:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maharaj K, Bradfield MFA, Nicol W (2014) Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity. Appl Microbiol Biotechnol 98(17):7379–7386

    Article  CAS  PubMed  Google Scholar 

  17. Villadsen J, Nielsen J, Lidn G (2011) Bioreaction Engineering principles. Springer Sciences and Business Media, Massachusetts, pp 383–458

    Book  Google Scholar 

  18. Corona-González RI, Miramontes-Murillo R, Arriola-Guevara E, Guatemala-Morales G, Toriz G, Pelayo-Ortiz C (2014) Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid. Bioresour Technol 164:113–118

    Article  CAS  PubMed  Google Scholar 

  19. Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222

    Article  CAS  PubMed  Google Scholar 

  20. Luthfi AAI, Jahim JM, Harun S, Tan JP, Mohammad AW (2017) Potential use of coconut shell activated carbon as an immobilisation carrier for high conversion of succinic acid from oil palm frond hydrolysate. RSC Adv 7(78):49480–49489

    Article  Google Scholar 

  21. Chen PC, Zheng P, Ye XY, Ji F (2017) Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzyme Microb Technol 98:34–42

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H (2014) Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol 174:190–197

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y (2007) Chap. 14—immobilized cell fermentation for production of chemicals and fuels A2—Yang, Shang-Tian. In: Bioprocessing for value-added products from renewable resources. Elsevier, Amsterdam, pp 373–396

    Chapter  Google Scholar 

  24. Manaf SFA, Jahim JM, Harun S, Luthfi AAI (2018) Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Ind Crop Prod 115:6–15

    Article  CAS  Google Scholar 

  25. Hames BR (2009) Biomass compositional analysis for energy application. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, California, pp 145–167

    Chapter  Google Scholar 

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory, Golden

    Google Scholar 

  27. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  28. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  29. Harun S, Balan V, Takriff MS, Hassan O, Jahim J, Dale BE (2013) Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. Biotechnol Biofuels 6(1):1–17

    Article  CAS  Google Scholar 

  30. Telliard W (2001) Method 1684: total, fixed, and volatile solids in water, solids, and biosolids. US Environmental Protection Agency, Washington

    Google Scholar 

  31. Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163–173

    Article  CAS  Google Scholar 

  33. Hsu T-C, Guo G-L, Chen W-H, Hwang W-S (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101(13):4907–4913

    Article  CAS  PubMed  Google Scholar 

  34. Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zakaria MR, Hirata S, Hassan MA (2015) Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresour Technol 176:142–148

    Article  CAS  PubMed  Google Scholar 

  36. Sabiha-Hanim S, Noor MAM, Rosma A (2015) Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydr Polym 115:533–539

    Article  CAS  PubMed  Google Scholar 

  37. Lai L-W, Idris A (2013) Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources 8(2):2792–2804

    Article  Google Scholar 

  38. Hussin MH, Rahim AA, Ibrahim MNM, Yemloul M, Perrin D, Brosse N (2014) Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Ind Crop Prod 52:544–551

    Article  CAS  Google Scholar 

  39. Fang C, Thomsen MH, Brudecki GP, Cybulska I, Frankær CG, Bastidas-Oyanedel JR, Schmidt JE (2015) Seawater as alternative to freshwater in pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8(22):3823–3831

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Zhang X, Cheng JJ (2012) Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Bioresour Technol 111:255–260

    Article  CAS  PubMed  Google Scholar 

  41. Budi E, Nasbey H, Yuniarti B, Nurmayatri Y, Fahdiana J, Budi A (2014) Pore structure of the activated coconut shell charcoal carbon. In: AIP Conference proceedings, vol 1. AIP, pp 130–133

  42. Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst 49:207–216

    CAS  Google Scholar 

  43. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Engin 9:177–192

    Article  CAS  Google Scholar 

  44. Pörtner R (2015) Bioreactors for mammalian cells. In: Al-Rubeai M (ed) Animal cell culture. Springer International Publishing, Switzerland, pp 89–135

    Chapter  Google Scholar 

  45. Corona-González RI, Bories A, González-Álvarez V, Pelayo-Ortiz C (2008) Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem 43:1047–1053

    Article  CAS  Google Scholar 

  46. Lee PC, Lee SY, Hong SH, Chang HN (2003) Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst Eng 26(1):63–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Ministry of Higher Education, Malaysia through the grant provided under Long term Research Grant Scheme (LRGS/2013/UKM-UKM/PT/01) on project entitled “Biochemical Platform for Conversion of Diversified Lignocellulosic Biomass to Priceless Precursor and Biobased Fine Chemicals”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamaliah Md Jahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luthfi, A.A.I., Tan, J.P., Harun, S. et al. Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess Biosyst Eng 42, 117–130 (2019). https://doi.org/10.1007/s00449-018-2019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2019-8

Keywords

Navigation