Skip to main content
Log in

Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We introduce a new structure for a set of points in the plane and an angle \(\alpha \), which is similar in flavor to a bounded-degree MST. We name this structure \(\alpha \)-MST. Let P be a set of points in the plane and let \(0 < \alpha \le 2\pi \) be an angle. An \(\alpha \)-ST of P is a spanning tree of the complete Euclidean graph induced by P, with the additional property that for each point \(p \in P\), the smallest angle around p containing all the edges adjacent to p is at most \(\alpha \). An \(\alpha \)-MST of P is then an \(\alpha \)-ST of P of minimum weight, where the weight of an \(\alpha \)-ST is the sum of the lengths of its edges. For \(\alpha < \pi /3\), an \(\alpha \)-ST does not always exist, and, for \(\alpha \ge \pi /3\), it always exists (Ackerman et al. in Comput Geom Theory Appl 46(3):213–218, 2013; Aichholzer et al. in Comput Geom Theory Appl 46(1):17–28, 2013; Carmi et al. in Comput Geom Theory Appl 44(9):477–485, 2011). In this paper, we study the problem of computing an \(\alpha \)-MST for several common values of \(\alpha \). Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point \(p \in P\), we associate a wedge \({\textsc {w}_{p}}\) of angle \(\alpha \) and apex p. The goal is to assign an orientation and a radius \(r_p\) to each wedge \({\textsc {w}_{p}}\), such that the resulting graph is connected and its MST is an \(\alpha \)-MST (we draw an edge between p and q if \(p \in {\textsc {w}_{q}}\), \(q \in {\textsc {w}_{p}}\), and \(|pq| \le r_p, r_q\)). We prove that the problem of computing an \(\alpha \)-MST is NP-hard, at least for \(\alpha =\pi \) and \(\alpha =2\pi /3\), and present constant-factor approximation algorithms for \(\alpha = \pi /2, 2\pi /3, \pi \). One of our major results is a surprising theorem for \(\alpha = 2\pi /3\), which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set P of 3n points in the plane and any partitioning of the points into n triplets, one can orient the wedges of each triplet independently, such that the graph induced by P is connected. We apply the theorem to the antenna conversion problem and to the orientation and power assignment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Comput. Geom.: Theory Appl. 46(3), 213–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Pór, A., Santos, F., Speckmann, B., Vogtenhuber, B.: Maximizing maximal angles for plane straight-line graphs. Comput. Geom.: Theory Appl. 46(1), 17–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodríguez, Y.N., Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super) thin or solid is hard: a study of grid Hamiltonicity. Comput. Geom.: Theory Appl. 42(6–7), 582–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aschner, R., Katz, M.J.: Bounded-angle spanning tree: modeling networks with angular constraints. In: Proceeding of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), pp. 387–398 (2014)

  6. Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas. Comput. Geom.: Theory Appl. 46(9), 1017–1026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bárány, I., Pór, A., Valtr, P.: Paths with no small angles. SIAM J. Discret. Math. 23(4), 1655–1666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M.J., Maheshwari, A.: Switching to directional antennas with constant increase in radius and hop distance. Algorithmica 69(2), 397–409 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calinescu, G.: Min-power strong connectivity. In: Proceedings of the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 67–80 (2010)

  10. Calinescu, G., Mandoiu, I.I., Zelikovsky, A.: Symmetric connectivity with minimum power consumption in radio networks. In: Proceedings of the 2nd IFIP International Conference on Theoretical Computer Science, pp. 119–130 (2002)

  11. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: 20th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 344–351 (2008)

  12. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Comput. Geom.: Theory Appl. 44(9), 477–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discret. Comput. Geom. 32(2), 177–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness results for the power range assignment problem in packet radio networks. In: 2nd International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 197–208 (1999)

  15. Dobrev, S., Eftekhari, M., MacQuarrie, F., Manuch, J., Morales-Ponce, O., Narayanan, L., Opatrny, J., Stacho, L.: Connectivity with directional antennas in the symmetric communication model. In: Mexican Conference on Discrete Mathematics and Computational Geometry (2013)

  16. Dumitrescu, A., Pach, J., Tóth, G.: Drawing Hamiltonian cycles with no large angles. Electron. J. Comb. 19(2), P31 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fekete, S.P., Woeginger, G.J.: Angle-restricted tours in the plane. Comput. Geom.: Theory Appl. 8, 195–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discret. Appl. Math. 157(5), 960–970 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khuller, S., Raghavachari, B., Young, N.E.: Low-degree spanning trees of small weight. SIAM J. Comput. 25(2), 355–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theor. Comput. Sci. 243, 289–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S., Rolim, J.D.P. (Eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, Chapter 3. Springer, Berlin (2011)

  24. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Nijnatten, F.: Range Assignment with Directional Antennas. Master’s Thesis, Technische Universiteit Eindhoven (2008)

  26. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the travelling salesman problem. J. Algorithms 5(2), 231–246 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Katz.

Additional information

A preliminary version of this paper appears in the Proceedings of ICALP’14 [5]. Work by R. Aschner was partially supported by the Lynn and William Frankel Center for Computer Sciences. Work by M. Katz was partially supported by Grant 1045/10 from the Israel Science Foundation. Work by M. Katz and R. Aschner was partially supported by Grant 2010074 from the United States—Israel Binational Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aschner, R., Katz, M.J. Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints. Algorithmica 77, 349–373 (2017). https://doi.org/10.1007/s00453-015-0076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0076-9

Keywords

Navigation